氢能利用安全技术研究与标准体系建设思考

曹湘洪, 魏志强

中国工程科学 ›› 2020, Vol. 22 ›› Issue (5) : 144-151.

PDF(3583 KB)
PDF(3583 KB)
中国工程科学 ›› 2020, Vol. 22 ›› Issue (5) : 144-151. DOI: 10.15302/J-SSCAE-2020.05.018
工程管理
Orginal Article

氢能利用安全技术研究与标准体系建设思考

作者信息 +

Technologies for the Safe Use of Hydrogen and Construction of the Safety Standards System

Author information +
History +

摘要

中国车用氢能产业正处于快速起步阶段。充分认识氢气的危险性、安全利用氢能是我国车用氢能产业健康发展的基础。本文在分析氢气的物理化学性质和氢气与材料相容性问题后,提出了实现氢气安全利用的三个基本原则;系统介绍了日本在高压氢能安全利用方面的研究成果与安全技术措施,提出了我国燃料电池汽车(FCEV)发展中安全利用氢能的建议:一是总体规划设计,加大科技投入,形成以国家氢能安全实验室为主体,社会科技力量积极参与的研究体制;二是加快修订完善车用氢能安全标准体系;三是构建70 MPa 涉氢装备制造体系。

Abstract

The industry of hydrogen energy for fuel cell electric vehicles (FCEVs) is in a rapid start-up stage in China. Understanding of the danger of hydrogen and safe use of the hydrogen energy are the basis for the healthy development of the FCEV industry. In this study, we analyze the physical and chemical properties of hydrogen and the compatibility issues for hydrogen and materials and then propose three basic principles for the safe use of hydrogen. Subsequently, the research outputs and technical measures for the safe use of high-pressure hydrogen energy in Japan are thoroughly introduced and some suggestions are presented for the safe use of hydrogen in accordance with the Chinese situation. First, China should conduct overall planning and design, increase investment in science and technology, and form a research system that takes the National Hydrogen Safety Laboratory as the main body and has active participation from social science and technology forces. Moreover, it should perfect its hydrogen safety standards system for vehicles and build a 70 MPa hydrogen-related equipment manufacturing system.

关键词

氢能 / 燃料电池汽车 / 安全技术 / 标准体系

Keywords

hydrogen energy / fuel cell electric vehicle / safety technology / standards system

引用本文

导出引用
曹湘洪, 魏志强. 氢能利用安全技术研究与标准体系建设思考. 中国工程科学. 2020, 22(5): 144-151 https://doi.org/10.15302/J-SSCAE-2020.05.018

参考文献

[1]
梁慧. 日本氢能源技术发展战略及启示 [J]. 国际石油经济, 2016, 24(8): 87–95. Liang H. The development strategy of Japan’s hydrogen energy technology and its enlightenment [J]. International Petroleum Economics, 2016, 24(8): 87–95.
[2]
郑津洋, 刘自亮, 花争立, 等. 氢安全研究现状及面临的挑战 [J]. 安全与环境学报, 2020, 20(1): 106–115. Zheng J Y, Liu Z L, Hua Z L, et al. Research status-in-situ and key challenges in hydrogen safety [J]. Journal of Safety and Environment, 2020, 20(1): 106–115.
[3]
郭婷, 杨沄芃, 王金伟, 等. 燃料电池汽车氢电安全法规标准的 研究 [J]. 客车技术与研究, 2018, 4(1): 57–59. Guo T, Yang Y P, Wang J W, et al. Research on regulations and standards about hydrogen and electricity safety for fuel cell vehicles [J]. Bus & Coach Technology and Research, 2018, 4(1): 57–59.
[4]
马秋玉, 赵子亮, 赵洪辉, 等. 燃料电池行业标准现状综述 [J]. 汽 车文摘, 2020, 1(1): 14–17. Ma Q Y, Zhao Z L, Zhao H H, et al. Overview on the present situation of fuel cell industry standards [J]. Automotive Digest, 2020, 1(1): 14–17.
[5]
李志勇, 潘相敏, 罗义英, 等. 氢能基础设施安全距离确定方法 的比较与分析 [J]. 太阳能学报, 2013, 34(8): 1492–1498. Li Z Y, Pan X M, Luo Y Y, et al. Comparison of determination approaches of safety distances for hydrogen infrastructure[J]. Acta Energiae Solaris Sinica, 2013, 34(8): 1492–1498.
[6]
Hord J. Is hydrogen a safe fuel? [J]. International Journal of Hydrogen Energy, 1978, 3(2): 157–176.
[7]
Rigas F, Amyotte P. Hydrogen Safety [M]. Florida: CRC Press, 2018.
[8]
Matsui H. 氢气爆炸特性研究 [J]. 中国安全生产科学技术, 2005, 1(6): 3–9. Matsui H. Characteristics of hydrogen explosions [J]. Journal of Safety Science and Technology, 2005, 1(6): 3–9.
[9]
Ibrahim R A. Corrosion and hydrogen embrittlement [M]. Manhattan: John Wiley & Sons Ltd., 2017.
[10]
American Petroleum Institute. API RP 941–2016 steels for hydrogen service at elevated temperatures and pressures in petroleum refineries and petrochemical plants [S]. Washington DC: API Publishing Services, 2016: 1–56.
PDF(3583 KB)

Accesses

Citation

Detail

段落导航
相关文章

/