全维可定义的天地协同组网架构与切片技术研究

李丹, 朱棣, 申涓

中国工程科学 ›› 2021, Vol. 23 ›› Issue (2) : 30-38.

PDF(1532 KB)
PDF(1532 KB)
中国工程科学 ›› 2021, Vol. 23 ›› Issue (2) : 30-38. DOI: 10.15302/J-SSCAE-2021.02.005
网络强国
Orginal Article

全维可定义的天地协同组网架构与切片技术研究

作者信息 +

Networking Architecture and Slicing Technology of Space–Ground Cooperative Network Based on Full-Dimension Definability

Author information +
History +

摘要

面对未来网络对全维度空间泛在互联互通的信息服务需求,现有的卫星互联网基础架构及由此构建的技术体系在异构协同、资源高效、精准按需、稳定可靠等方面仍面临重大挑战。本文首先对我国卫星互联网技术发展需求进行分析研判,讨论了全球卫星互联网技术的发展现状和趋势;其次阐述了代表性的天地协同广域通信网络组网架构、全维可定义的网络节点;最后从网络智能切片、数据解析与转发、资源协调控制机制等方面,提出天地协同网络中面向业务特性的智能切片关键技术。研究建议:依托天地协同网络架构,以网络资源管理控制、网络智慧化、网络结构全维可定义等技术为支撑,突破业务所需的天地协同网络资源智能切片、全维可定义的数据报文灵活解析与转发、天地协同网络资源全局协调控制等关键技术;在国家层面加大对天地协同网络的政策支持力度,为天地协同网络资源全局动态优化技术创新和产业发展提供持续推动力。

Abstract

Future networks demand ubiquitous and interconnected information services in a full-dimensional space. However, the infrastructure and the deriving technology system of the existing satellite Internet still face unprecedented challenges in terms of heterogeneous collaboration, resource efficiency, precision on demand, stability, and reliability. In this article, we analyze the development demand for satellite Internet in China and discuss the development status and trend of satellite Internet worldwide. Subsequently, we elaborate on a typical space–ground cooperative networking architecture and full-dimension definable network nodes. Ultimately, we propose the key intelligent-slicing technologies for a space–ground cooperative network in terms of network intelligent slicing, data analysis and forwarding, and the resource coordination and control mechanism. Furthermore, a development route is proposed for the intelligent slicing technology. Breakthroughs should be made on key technologies such as the businesson-demand intelligent slicing, data analysis and forwarding with full-dimension definability, and the global source coordination and control technologies; these breakthroughs should rely on the space–ground cooperative network architecture and supported by technologies such as network resource management and control, network intelligence, and full-dimension definability of the network architecture. This will ultimately provide continuous impetus for the innovation of the global dynamic optimization technology of the space–ground cooperative network resources.

关键词

天地协同网络 / 智能网络切片 / 全维可定义 / 组网架构与机制

Keywords

space–ground cooperative network / intelligent network slicing / full-dimension definable / networking architecture and mechanism

引用本文

导出引用
李丹, 朱棣, 申涓. 全维可定义的天地协同组网架构与切片技术研究. 中国工程科学. 2021, 23(2): 30-38 https://doi.org/10.15302/J-SSCAE-2021.02.005

参考文献

[1]
Ohlen P, Skubic B, Ghebretensae A, et al. Data plane and control architectures for 5G transport networks [C]. Valencia: 2015 European Conference on Optical Communication (ECOC), 2015.
[2]
Ren J, Zhang N, Gao Y, et al. Guest editorial: Service-oriented Space–Air–Ground integrated networks [J]. IEEE Wireless Communications, 2020, 27(6): 10–11.
[3]
黄韬, 刘江, 汪硕, 等. 未来网络技术与发展趋势综述 [J]. 通信 学报, 2021, 42(1): 130–150. Huang T, Liu J, Wang S, et al. Survey of the future network technology and trend [J]. Journal on Communications, 2021, 42(1): 130–150.
[4]
沈学民, 承楠, 周海波, 等. 空天地一体化网络技术: 探索与展望 [J]. 物联网学报, 2020, 4(3): 3–19. Shen X M, Cheng N, Zhou H B, et al. Space–Air–Ground integrated networks: Review and prospect [J]. Chinese Journal on Internet of Things, 2020, 4(3): 3–19.
[5]
Jiang C, Zhu X. Reinforcement learning based capacity management in multi-layer satellite networks [J]. IEEE Transactions on Wireless Communications, 2020, 19(7): 4685–4699.
[6]
Hubenko V, Raines R, Mills R, et al. Improving the global information grid’s performance through satellite communications layer enhancements [J]. IEEE Communications Magazine, 2006, 44(11): 66–72.
[7]
Hamdi M, Boudriga N, Obaidat M. Bandwidth-effective design of a satellite-based hybrid wireless sensor network for mobile target detection and tracking [J]. IEEE Systems Journal, 2008, 2(1): 74–82.
[8]
Blumenthal S. Medium earth orbit Ka band satellite communications system [C]. San Diego: MILCOM 2013—2013 IEEE Military Communications Conference, 2013.
[9]
Nishiyama H, Tada Y, Kato N, et al. Toward optimized traffic distribution for efficient network capacity utilization in twolayered satellite networks [J]. IEEE Transactions on Vehicular Technology, 2013, 62(3): 1303–1313.
[10]
Conti M, Giordano S. Mobile ad hoc networking: Milestones, challenges, and new research directions [J]. IEEE Communications Magazine, 2014, 52(1): 85–96.
[11]
Aalamifar F, Lampe L, Bavarian S, et al. WiMAX technology in smart distribution networks: Architecture, modeling, and applications [C]. Chicago: 2014 IEEE PES T&D Conference and Exposition, 2014.
[12]
Ye J, Dang S, Shihada B, et al. Space-Air-Ground integrated networks: Outage performance analysis [J]. IEEE Transactions on Wireless Communications, 2020, 19(12): 7897–7912.
[13]
Chandrasekharan S, Gomez K, Al-Hourani A, et al. Designing and implementing future aerial communication networks [J]. IEEE Communications Magazine, 2016, 54(5): 26–34.
[14]
Liu J, Shi Y, Fadlullah Z, et al. Space–Air–Ground integrated network: A survey [J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2714–2741.
[15]
Kato N, Fadlullah Z, Tang F, et al. Optimizing Space–Air–Ground integrated networks by artificial intelligence [J]. IEEE Wireless Communications, 2019, 26(4): 140–147.
[16]
Du J, Jiang C, Wang J, et al. Machine learning for 6G wireless networks: Carrying forward enhanced bandwidth, massive access, and ultrareliable/low-latency service [J]. IEEE Vehicular Technology Magazine, 2020, 15(4): 122–134.
基金
国家重点研发计划“基于全维可定义的天地协同网络资源智能切片技术”(2020YFB1804803);中国工程院咨询项目“网络强国”(2020-ZD-14)
PDF(1532 KB)

Accesses

Citation

Detail

段落导航
相关文章

/