
我国智能建造关键领域技术发展的战略思考
Development of Key Domain-Relevant Technologies for Smart Construction in China
智能建造作为新一代信息技术和工程建造的有机融合,是实现我国建筑业高质量发展的重要依托。本文阐述了智能建造的基本概念与重要性,归纳了面向全产业链一体化的工程软件、面向智能工地的工程物联网、面向人机共融的智能化工程机械、面向智能决策的工程大数据等四类关键领域技术;通过问卷调研与专家访谈,分析了我国智能建造关键领域技术在市场环境、企业部署、核心资源储备等方面的现状和短板。在此基础上,明确了关键领域技术的发展目标,提出了建立健全标准体系、推动“产学研用”协同、加大知识产权保护、开展典型工程试点示范等重点任务,继而从管理机构、企业、高校等多个主体的角度形成对策建议。
Smart construction integrates new-generation information technology with construction and is important for the highquality development of China’s construction industry. This study expounds the basic concept and importance of smart construction and summarizes four types of key domain-relevant technologies: engineering software for entire industrial chain integration, construction Internet of things for smart construction sites, intelligent construction machinery for man–machine integration, and construction big data for intelligent decision making. Subsequently, we analyze the current status and weaknesses of these technologies in terms of market environment, enterprise deployment, and core resource reserves through questionnaire survey and expert interview. Moreover, we identify the development goals and propose the major tasks, including establishing and improving the standards system; promoting cooperation among industry, universities, research institutes, and application; improving intellectual property protection; and conducting pilot demonstration of typical projects. Furthermore, suggestions are proposed from the perspectives of government, enterprises, and universities.
智能建造 / 工程软件 / 工程物联网 / 工程机械 / 工程大数据
smart construction / engineering software / construction Internet of things / construction machinery / construction big data
[1] |
丁烈云. 智能建造创新型工程科技人才培养的思考 [J]. 高等工 程教育研究, 2019 (5): 1–4, 29. Ding L Y. System thinking on cultivation mode for innovative intelligent construction talents [J]. Research in Higher Education of Engineering, 2019 (5): 1–4, 29.
|
[2] |
Rossi A, Vila Y, Lusiani F, et al. Embedded smart sensor device in construction site machinery [J]. Computers in Industry, 2019, 108: 12–20.
|
[3] |
Bucchiarone A, De Sanctis M, Hevesi P, et al. Smart construction: Remote and adaptable management of construction sites through IoT [J]. IEEE Internet of Things Magazine, 2019, 2(3): 38–45.
|
[4] |
Kochovski P, Stankovski V. Supporting smart construction with dependable edge computing infrastructures and applications [J]. Automation in Construction, 2018, 85:182–192.
|
[5] |
Edirisinghe R. Digital skin of the construction site: Smart sensor technologies towards the future smart construction site [J]. Engineering, Construction and Architectural Management, 2019, 26(2): 184–223.
|
[6] |
Ding L, Fang W, Luo H, et al. A deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short-term memory [J]. Automation in Construction, 2018, 86: 118–124.
|
[7] |
Zhou H, Wang H, Zeng W. Smart construction site in mega construction projects: A case study on island tunneling project of Hong Kong-Zhuhai-Macao Bridge [J]. Frontiers of Engineering Management, 2018, 5(1): 78–87.
|
[8] |
廖玉平. 加快建筑业转型 推动高质量发展——解读《关于推动 智能建造与建筑工业化协同发展的指导意见》[J]. 中国勘察设 计, 2020 (9): 20–21. Liao Y P. Accelerate the transformation of the construction industry and promote high-quality development-interpretation of the Guiding opinions on promoting the coordinated development of smart construction and construction industrialization [J]. China Engineering & Consulting, 2020 (9): 20–21.
|
[9] |
丁烈云. 智能建造推动建筑产业变革 [N]. 中国建设报, 2019-06- 07(08). Ding L Y. Intelligent construction promotes the transformation of the construction industry [N]. China Construction News, 2019-06- 07(08).
|
[10] |
毛超, 彭窑胭. 智能建造的理论框架与核心逻辑构建 [J]. 工程 管理学报, 2020, 34(5):1–6. Mao C, Peng Y Y. The Theoretical framework and core logic of intelligent construction [J]. Journal of Engineering Management, 2020, 34(5):1–6.
|
[11] |
Eastman C, Teicholz P, Sacks R, et al. BIM handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors [M]. New York: John Wiley & Sons, 2011.
|
[12] |
陈珂, 陈强健, 杜鹏. 国产BIM建模软件发展的思考:基于 PCA的影响因素研究[J/OL]. 土木建筑工程信息技术, 2021: 1–9 [2021-03-22]. http://kns.cnki.net/kcms/detail/11.5823. TU.20210201.1417.034.html. Chen K, Chen Q J, Du P. Reflection on the development of domestic BIM modeling software: A study on the influence factors based on PCA [J/OL]. Journal of Information Technology in Civil Engineering and Architecture, 2021: 1–9 [2021-03-22]. http://kns.cnki. net/kcms/detail/11.5823.TU.20210201.1417.034.html.
|
[13] |
Kanan R, Elhassan Bensalem R. An IoT-based autonomous system for workers’ safety in construction sits with real-time alarming, monitoring, and positioning strategies [J]. Automation in Construction, 2018 (88): 73–86.
|
[14] |
Zhou C, Ding L Y. Safety barrier warning system for underground construction sites using Internet-of-Things technologies [J]. Automation in Construction, 2017, 83: 372–389.
|
[15] |
张曙. 工业4.0和智能制造 [J]. 机械设计与制造工程, 2014, 43(8): 1–5. Zhang S. The industry 4.0 and intelligent manufacturing [J]. Machine Design and Manufacturing Engineering, 2014, 43(8): 1–5.
|
[16] |
周济. 智能制造是“中国制造2025”主攻方向 [J]. 企业观察家, 2019 (11):54–55. Zhou J. Intelligent manufacturing-the main direction of “made in China 2025” [J]. Enterprise Observer, 2019 (11): 54–55.
|
[17] |
Bilal M, Oyedele L O, Qadir J, et al. Big data in the construction industry: A review of present status, opportunities, and future trends [J]. Advanced Engineering Informatics, 2016, 30(3): 500– 521.
|
[18] |
Niu Y, Lu W, Xue F, et al. Towards the “third wave”: An SCO-enabled occupational health and safety management system for construction [J]. Safety Science, 2019, 111: 213–223.
|
[19] |
Zhou C, Ding L Y, Skibniewski M J, et al. Data based complex network modeling and analysis of shield tunneling performance in metro construction [J]. Advanced Engineering Informatics, 2018, 38: 168–186.
|
[20] |
胡越, 罗东阳, 花奎, 等. 关于深度学习的综述与讨论 [J]. 智能 系统学报, 2019, 14(1):1–19. Hu Y, Luo D Y, Hua K, et al. Overview on deep learning [J]. CAAI Transactions on Intelligent Systems, 2019, 14(1):1–19.
|
[21] |
Akinosho T D, Oyedele L O, Bilal M, et al. Deep learning in the construction industry: A review of present status and future innovations [J]. Journal of Building Engineering, 2020: 101827.
|
/
〈 |
|
〉 |