微生物药物产业现状与发展趋势

于晴, 黄婷婷, 邓子新

中国工程科学 ›› 2021, Vol. 23 ›› Issue (5) : 69-78.

PDF(546 KB)
PDF(546 KB)
中国工程科学 ›› 2021, Vol. 23 ›› Issue (5) : 69-78. DOI: 10.15302/J-SSCAE-2021.05.009
中国微生物安全与健康产业发展战略研究
Orginal Article

微生物药物产业现状与发展趋势

作者信息 +

Microbial Medicine Industry: Current Status and Future Trends

Author information +
History +

摘要

微生物来源的天然产物药物具有结构多样、活性优良等优点,临床应用潜力巨大。本研究系统分析了我国微生物药物产业发展现状,梳理了微生物种质资源利用、优良菌种筛选和发酵工艺优化、菌株工程化改造、新型微生物药物创制等技术趋势,助力我国破解产业瓶颈、加速产业升级。我国现代微生物药物产业已经具备了坚实的资源和技术基础,但与国际领先水平有一定的差距。本研究针对产业面临的机遇与挑战,从建立统筹创新的微生物医药大科学装置、加强微生物药物基础研究和技术自主研发、构建战略性人才引育系统、形成体系化产业激励政策等四个方面提出了发展建议。

Abstract

The microbial sourced natural products possess diverse structures and excellent activities, implying great potentials for clinical application. This study systematically analyzes the current status of the microbial medicine industry in China and summarizes the development trends of the industry from the aspects of microbial strain resource utilization, excellent strain screening, fermentation process optimization, strain engineering, and new microbial medicine development. This aims to facilitate major breakthroughs and industrial upgrades for China’s microbial medicine industry. Although China’s microbial medicine industry has solid resource and technical foundations, it still lags behind the international advanced level. Considering the opportunities and challenges, we propose several suggestions for promoting China’s microbial medicine industry: constructing large-scale scientific facilities for microbial medicine, strengthening basic research and independent technology development, establishing a talent cultivation system, and formulating systematic industrial incentives.

关键词

微生物药物 / 发展趋势 / 生物活性 / 微生物代谢 / 合成生物学

Keywords

microbial medicine / development trend / biological activity / microbial metabolism / synthetic biology

引用本文

导出引用
于晴, 黄婷婷, 邓子新. 微生物药物产业现状与发展趋势. 中国工程科学. 2021, 23(5): 69-78 https://doi.org/10.15302/J-SSCAE-2021.05.009

参考文献

[1]
Abdel-Razek A S, El-Naggar M E, Allam A, et al. Microbial natural products in drug discovery [J]. Processes, 2020, 8(4): 1–19.
[2]
Newman D J, Cragg G M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019 [J]. Journal of Natural Products, 2020, 83(3): 770–803.
[3]
Demain A L, Sanchez S. Microbial drug discovery: 80 years of progress [J]. Journal of Antibiotics, 2009, 62(1): 5–16.
[4]
生物医药产业“十二五”开局 [J]. 中国经济和信息化, 2011 (9): 74–75. The status of biopharmaceutical industry at the “12th Five-Year Plan” opening [J]. China Economy & Informatization, 2011 (9): 74–75.
[5]
李炎炎, 高山行. 中国生物医药产业发展现状分析——基于 1995—2015年统计数据 [J]. 中国科技论坛, 2016 (12): 42–47, 97. Li Y Y, Gao S X. Biopharmaceutical industry’s developing situation based on statistical data from 1995 to 2015 [J]. Forum on Science and Technology in China, 2016 (12): 42–47, 97.
[6]
Kudo F, Eguchi T. Aminoglycoside antibiotics: New insights into the biosynthetic machinery of old drugs [J]. Chemical Record, 2016, 16(1): 4–18.
[7]
郝天怡, 赫卫清. 大环内酯类抗生素代谢工程的研究进展 [J]. 生 物工程学报, 2021, 37(5): 1737–1747. Hao T Y, Hao W Q. Advances in metabolic engineering of macrolide antibiotics [J]. Chinese Journal of Biotechnology, 2021, 37(5): 1737–1747.
[8]
李振, 殷瑜, 陈代杰. 四环素类抗生素的复苏 [J/OL]. 中国抗生素 杂志: 1–7. [2021-09-06]. https://doi.org/10.13461/j.cnki.cja.007168. Li Z, Yin Y, Chen D J. The tetracyclines resuscitation [J/OL]. Chinese Journal of Antibiotics: 1–7. [2021-09-06]. https://doi. org/10.13461/j.cnki.cja.007168.
[9]
孟思童. 林可霉素生物合成的高产及硝酸盐效应机制解析 [D]. 上海: 上海交通大学(博士学位论文), 2017. Meng S T. Overproduction mechanism and nitrate stimulating effect on Lincomycin biosynthesis [D]. Shanghai: Journal of Shanghai Jiaotong University (Doctoral dissertation), 2017.
[10]
谢婷, 刘守强, 张宏周, 等. 林可霉素生产中三级种子罐的发酵 工艺优化 [J]. 微生物学通报, 2020, 47(12): 4359–4365. Xie T, Liu S Q, Zhang H Z, et al. Optimization of fermentation process of the third-stage seed fermenter in lincomycin production [J]. Microbiology China, 2020, 47(12): 4359–4365.
[11]
Gordaliza M. Natural products as leads to anticancer drugs [J]. Clinical & Translational Oncology, 2007, 9(12): 767–776.
[12]
赵东方, 何荣景, 侯旭东, 等. 源于天然的酶抑制剂高效发现及 评价新技术:进展与展望 [J]. 上海中医药大学学报, 2021, 35(1): 1–11, 19. Zhao D F, He R J, Hou X D, et al. New technologies for efficient discovery and evaluation of natural enzyme inhibitors: Research progress and perspectives [J]. Academic Journal of Shanghai University of Traditional Chinese Medicine, 2021, 35(1): 1–11, 19.
[13]
唐章勇, 唐灿. 酶抑制剂筛选的研究进展 [J]. 上海医药, 2007 (3): 117–119. Tang Z Y, Tang C. Research progress in screening enzyme inhibitors [J]. Shanghai Medical & Pharmaceutical Journal, 2007 (3): 117–119.
[14]
Kisukuri C M, Andrade L H. Production of chiral compounds using immobilized cells as a source of biocatalysts [J]. Organic & Biomolecular Chemistry, 2015, 13(40): 10086–10107.
[15]
Wang G, Haringa C, Noorman H, et al. Developing a computational framework to advance bioprocess scale-up [J]. Trends Biotechnol, 2020, 38(8): 846–856.
[16]
Elibol M. Product shifting by controlling medium pH in immobilised Streptomyces coelicolor A3(2) culture [J]. Process Biochemistry, 2002, 37(12): 1381–1386.
[17]
Chakravarty I, Kundu S. Improved production of Daptomycin in an airlift bioreactor by morphologically modified and immobilized cells of Streptomyces roseosporus [J]. AMB Express, 2016, 6(1): 101.
[18]
Tan Z L, Zheng X, Wu Y, et al. In vivo continuous evolution of metabolic pathways for chemical production [J]. Microb Cell Fact, 2019, 18(1): 82.
[19]
Douma R D, Verheijen P J T, de Laat W T A M, et al. Dynamic gene expression regulation model for growth and penicillin production in penicillium chrysogenum [J]. Biotechnology and Bioengineering, 2010, 106(4): 608–618.
[20]
Veiter L, Kager J, Herwig C. Optimal process design space to ensure maximum viability and productivity in Penicillium chrysogenum pellets during fed-batch cultivations through morphological and physiological control [J]. Microb Cell Fact, 2020, 19(1): 33.
[21]
Schadel F, Franco-Lara E. Rapid sampling devices for metabolic engineering applications [J]. Applied Microbiology Biotechnology, 2009, 83(2): 199–208.
[22]
Weber T, Charusanti P, Musiol-Kroll E M, et al. Metabolic engineering of antibiotic factories: New tools for antibiotic production in actinomycetes [J]. Trends in Biotechnology, 2015, 33(1): 15–26.
[23]
欧竑宇. 链霉菌基因组岛和次生代谢物合成相关的生物信息学 工具及数据库 [J]. 微生物学通报, 2013, 40(10): 1909–1919. Ou H Y. Bioinformatics tools and databases focused on genomic islands and secondary metabolite biosynthesis of Streptomyces [J]. Microbiology China, 2013, 40(10): 1909–1919.
[24]
Doroghazi J R, Albright J C, Goering A W, et al. A roadmap for natural product discovery based on large-scale genomics and metabolomics [J]. Nature Chemical Biology, 2014, 10(11): 963– 968.
[25]
Medema M H, Blin K, Cimermancic P, et al. antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences [J]. Nucleic Acids Research, 2011, 39: W339–346.
[26]
Boddy C N. Bioinformatics tools for genome mining of polyketide and non-ribosomal peptides [J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(2): 443–450.
[27]
Lyu J M, Hu D, Gao H, et al. Biosynthesis of helvolic acid and identification of an unusual C-4-demethylation process distinct from sterol biosynthesis [J]. Nature Communications, 2017, 8(1): 1644.
[28]
Malico A A, Nichols L, Williams G J. Synthetic biology enabling access to designer polyketides [J]. Current Opinion in Chemical Biology, 2020 (58): 45–53.
[29]
Ajikumar P K, Xiao W H, Tyo K E, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli [J]. Science, 2010, 330(6000): 70–74.
[30]
Zhou Y J, Gao W, Rong Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production [J]. Journal of the American Chemical Society, 2012, 134(6): 3234–3241.
[31]
Paddon C J, Westfall P J, Pitera D J, et al. High-level semisynthetic production of the potent antimalarial artemisinin [J]. Nature, 2013, 496(7446): 528.
[32]
Ozber N, Watkins J L, Facchini P J. Back to the plant: Overcoming roadblocks to the microbial production of pharmaceutically important plant natural products [J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(9–10): 815–828.
[33]
Menchaca R, Martinez V, Rodriguez A, et al. Synthesis of natural ecteinascidins (ET-729, ET-745, ET-759B, ET-736, ET-637, ET594) from cyanosafracin B [J]. Journal of Organic Chemistry, 2003, 68(23): 8859–8866.
[34]
卢俊南, 褚鑫, 潘燕平, 等. 基因编辑技术:进展与挑战 [J]. 中国 科学院院刊, 2018, 33(11): 1184–1192. Lu J N, Chu X, Pan Y P, et al. Advances and Challenges in Gene Editing Technologies [J]. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1184–1192.
[35]
Xu M, Zhang F, Cheng Z, et al. Functional genome mining reveals a class v lanthipeptide containing a d-Amino acid introduced by an F420 H2 -dependent reductase [J]. Angewandte ChemieInternational Edition, 2020, 59(41): 18029–18035.
[36]
胡黔楠, 吴玲, 涂伟忠, 等. 微生物药物生物合成知识库研究进 展 [J]. 生物产业技术, 2015 (6): 59–62. Hu Q N, Wu L, Tu W Z, et al. The trends in microbial drug biosynthetic databases [J]. Biotechnology & Business, 2015 (6): 59–62.
基金
中国工程院咨询项目“中国微生物安全与健康产业发展战略研究”(2020-ZD-05)
PDF(546 KB)

Accesses

Citation

Detail

段落导航
相关文章

/