
微生物资源分子鉴定技术的研究进展
Research Progress in Molecular Identification Technology for Microbial Resources
微生物作为全世界分布最广且拥有量最多的生物资源,应用领域广泛,具有突出的经济价值和社会价值。以往虽已有众多微生物研究,但限于技术方法无法深入展开,随着微生物检测技术的不断发展,为微生物研究提供了新途径和新方法。本文总结了国内外微生物资源分子鉴定技术的发展及其应用情况,主要有脱氧核糖核酸(DNA)含量测定、核酸杂交技术、DNA 指纹图谱技术、核酸扩增技术、基因芯片技术和高通量测序技术等;梳理了现有微生物资源分子鉴定技术的优缺点;分析了微生物资源分子鉴定技术存在的问题,如依赖于实验室环境,实验结果的重现性、准确性不足,缺乏相应的微生物数据库。为促进我国微生物资源的保护和利用,研究建议,要继续加强对各鉴定技术的研究,建立具有自主知识产权的微生物资源鉴定平台,完善微生物资源数据库等。
As the most widely distributed and abundant biological resources in the world, microbial resources have been applied in many fields and shown great economic and social values. Although there have been numerous previous studies on microorganisms, the studies could not be further launched owing to limited technical methods. However, the continuous development of microbial detection technologies now provides new approaches for microbial research. In this article, we summarize the molecular identification technologies and their application for microbial resources in China and abroad; these technologies include deoxyribonucleic acid (DNA) (G+C) mol% identification, nucleic acid hybridization, DNA fingerprinting, nucleic acid amplification, gene chips, and high throughput sequencing. Moreover, we summarize the advantages and disadvantages of each technology and analyze the problems faced by molecular identification of microbial resources, including reliance on laboratory environment, insufficient reproducibility and accuracy of experimental results, and lack of microbial databases. To protect and utilize microbial resources, China should strengthen the research of each identification technology, establish a microbial resource identification platform with independent intellectual property rights, and improve the microbial resource database.
微生物资源 / 分子鉴定 / 核酸扩增技术 / 基因芯片技术 / 高通量测序技术 / 微生物数据库
microbial resources / molecular identification / nucleic acid amplification technique / gene chip technology / high throughput sequencing technology / microbiology database
[1] |
王正祥, 陈源源, 沈微, 等. 一种快速、高效大规模鉴定真菌的新 方法 [C]. 大庆: 第二届全国微生物资源学术暨国家微生物资源 平台运行服务研讨会, 2010. Wang Z X, Chen Y Y, Shen W, et al. A new method for rapid and efficient large-scale fungal identification [C]. Daqing: The Second National Symposium on Microbiological Resources Academic and National Microbiological Resources Platform, 2010.
|
[2] |
Girffiths B S, Ritz K, Glover L A. Broad-scale approaches to the determination of soil microbial community structure: Application of the community DNA hybridization technique [J]. Microbial Ecology, 1996, 31(3): 269–280.
|
[3] |
方婷子, 施春雷. 分子技术在食源性致病微生物检测中的应用 [J]. 食品安全质量检测学报, 2014, 5(7): 1923–1929. Fang T Z, Shi C L. Application of molecular techniques in detection of foodborne pathogenic microorganisms [J]. Journal of Food Safety and Quality, 2014, 5(7): 1923–1929.
|
[4] |
Carvalho-Pereira J, Fernandes F, Araujo R, et al. Multiplex PCR based strategy for detection of fungal pathogen DNA in patients with suspected invasive fungal infections [J]. Journal of Fungi, 2020, 6(4): 1–16.
|
[5] |
Rahimi-Khameneh S, Hsieh S, Xu R, et al. Pathogenicity and a TaqMan real-time PCR for specific detection of Pantoea allii, a bacterial pathogen of onions [J]. Plant Disease, 2019, 103: 3031– 3040.
|
[6] |
Udayashankar A C, Nayaka S C, Archana B, et al. Specific PCRbased detection of Phomopsis vexans the cause of leaf blight and fruit rot pathogen of Solanum melongena L [J]. Letters in Applied Microbiology 2019, 69(5): 358–365.
|
[7] |
Vinayaka A C, Ngo T A, Nguyen T, et al. Pathogen concentration combined solid-phase PCR on supercritical angle fluorescence microlens array for multiplexed detection of invasive nontyphoidal salmonella serovars [J]. Analytical Chemistry, 2020, 92(3): 2706– 2713.
|
[8] |
Geetha D K, Sivaraman B, Rammohan R, et al. A SYBR green based multiplex real-time PCR assay for rapid detection and differentiation of ocular bacterial pathogens [J]. Journal of Microbiological Methods, 2020, 171: 1–15.
|
[9] |
Wang L, Chen F, You D P, et al. Development and validation of a multiplex-PCR based assay for the detection of 18 pathogens in the cerebrospinal fluid of hospitalized children with viral encephalitis [J]. Journal of Virological Methods, 2020, 277: 1–15.
|
[10] |
Zhong Y K, Wang Y X, Zhao T, et al. Multiplex real-time SYBR green I PCR assays for simultaneous detection of 15 common enteric pathogens in stool samples [J]. Molecular and Cellular Probes, 2020, 53: 1–16.
|
[11] |
Tao J, Liu W W, Ding W, et al. A multiplex PCR assay with a common primer for the detection of eleven foodborne pathogens [J]. Journal of Food Science, 2020, 85: 744–754.
|
[12] |
Rajeswari P K P, Soderberg L M, Yacoub A, et al. Multiple pathogen biomarker detection using an encoded bead array in droplet PCR [J]. Journal of Microbiological Methods, 2017, 139: 22–28.
|
[13] |
戴玉柱, 崔大伟, 杨先知, 等. 五重荧光定量RT-PCR法检测甲型 流感病毒 [J]. 临床检验杂志, 2015, 33(9): 641–644. Dai Y Z, Cui D W, Yang X Z, et al. Detection of influenza a virus by multiplex real-time RT-PCR assay [J]. Journal of Clinical Testing, 2015, 33(9): 641–644.
|
[14] |
Lima A, Widen R, Vestal G, et al. A TaqMan probe-based real-time PCR assay for the rapid identification of the emerging multidrugresistant pathogen Candida auris on the BD max system [J]. Journal of Clinical Microbiology, 2019, 57(7): 1–12.
|
[15] |
Xiao Y, Li Z, Wang X, et al. Comparison of three TaqMan realtime reverse transcription-PCR assays in detecting SARS-CoV-2 [J]. Journal of Virological Methods, 2021, 288: 1–16.
|
[16] |
Haddar C, Verhoeven P O, Bourlet T, et al. Brief comparative evaluation of six open one-step RT-qPCR mastermixes for the detection of SARS-CoV-2 RNA using a Taqman probe [J]. Journal of Clinical Virology, 2020, 132: 1–14.
|
[17] |
秦奎伟, 吕雪飞, 侯东亚, 等. 基于环介导等温扩增技术的微流控芯片在病原微生物快速检测中的应用 [J]. 生命科学仪器, 2016, 14(1): 38–42. Qin K W, Lyu X F, Hou D Y, et al. The application of mircofluidic chip based on the loop-mediated isothermal amplification on therapid detection of the pathogenic microorganism [J]. Instruments for the Life Sciences, 2016, 14(1): 38–42.
|
[18] |
何祥鹏, 邹秉杰, 齐谢敏, 等. 基于核酸等温扩增的病原微生物 微流控检测技术 [J]. 遗传, 2019, 41(7): 611–624. He X P, Zou B J, Qi X M, et al. Methods of isothermal nucleic acid amplification-based microfluidic chips for pathogen microorganism detection [J]. Hereditas, 2019, 41 (7): 611–624.
|
[19] |
Shang Y, Sun J, Ye Y, et al. Loop-mediated isothermal amplification-based microfluidic chip for pathogen detection [J]. Critical Reviews in Food Science and Nutrition, 2020, 60(2): 201–224.
|
[20] |
Xu L, Wang Y, Zhu S, et al. Development and application of a LAMP assay for the detection of the latent apple tree pathogen Valsa mali [J]. Plant Disease, 2021, 105(4): 1065–1071.
|
[21] |
Sagcan H, Kara N T. Detection of potato ring rot pathogen clavibacter michiganensis subsp. sepedonicus by loop-mediated isothermal amplification (LAMP) assay [J]. Scientific Reports, 2019, 9(1): 1–8.
|
[22] |
全国果品标准化技术委员会. 甘蔗病原菌检测规程: 宿根矮化 病菌环介导等温扩增检测法 NY/T 2679—2015 [S]. 北京: 中华 人民共和国农业部, 2015. National Fruit Standardization Technical Committee. Detection procedures of sugarcane pathogen―Leifsonia xyli subsp.xyli― Detection method of loop-mediated isothermal amplification NY/ T 2679—2015 [S]. Beijing: The Ministry of Agriculture of the People’s Republic of China, 2015.
|
[23] |
Zhou Y, Xiao J, Ma X, et al. An effective established biosensor of bifunctional probes-labeled AuNPs combined with LAMP for detection of fish pathogen Streptococcus iniae [J]. Applied Microbiology and Biotechnology, 2018, 102: 5299–5308.
|
[24] |
Tsai M A, Wang P C, Yoshida T, et al. Development of a sensitive and specific LAMP PCR assay for detection of fish pathogen Lactococcus garvieae [J]. Diseases of Aquatic Organisms, 2013, 102(3): 225–235.
|
[25] |
Wang R, Zhao R, Li Y, et al. Rapid detection of multiple respiratory viruses based on microfluidic isothermal amplification and a real-time colorimetric method [J]. Lab on a Chip, 2018, 18(22): 3507–3515.
|
[26] |
王俊钢, 刘成江, 郭安民, 等. 分子生物学技术在乳酸菌鉴定中 的应用 [J]. 中国酿造, 2012, 31(1): 1–4. Wang J G, Liu C J, Guo A M, et al. Application of molecular biotechnology in the identification of lactic acid bacteria [J]. Chinese Brewing, 2012, 31(1): 1–4.
|
[27] |
吴清平, 范宏英, 张菊梅. 食源性致病菌免疫及分子检测新技术 研究进展 [J]. 食品科学, 2005, 26(11): 269−273. Wu Q P, Fan H Y, Zhang J M. Review on immune and new molecular detective techniques for foodborne bacterial pathogens [J]. Food Science, 2005, 26(11): 269−273.
|
[28] |
于欣欣. 生物芯片技术及其在食品检测中的应用 [J]. 食品安全 导刊, 2020 (18): 144. Yu X X. Biochip technology and its application in food detection [J]. China Food Safety Magazine, 2020 (18): 144.
|
[29] |
曹雨. 现代分子生物学技术在环境微生物领域的应用 [J]. 建筑 与预算, 2020 (1): 54–57. Cao Y. Application of modern molecular biology technology in the field of environmental microbiology [J]. Building and Budget, 2020 (1): 54–57.
|
[30] |
Breitwieser F P, Lu J, Salzberg S L. A review of methods and databases for metagenomic classification and assembly [J]. Briefings in Bioinformatics, 2019, 20(4): 1125–1136.
|
[31] |
Quince C, Walker A W, Simpson J T, et al. Shotgun metagenomics, from sampling to analysis [J]. Nature Biotechnology, 2017, 35: 833–844.
|
[32] |
刘东来, 张春涛, 王佑春, 等. 病原宏基因组高通量测序技术质 量控制与评价的挑战和思考 [J]. 生物工程学报, 2020, 36(12): 2598–2609. Liu D L, Zhang C T, Wang Y C, et al. Challenges and considerations on quality control and evaluation of pathogen metagenomic next-generation sequencing [J]. Chinese Journal of Biotechnology, 2020, 36(12): 2598–2609.
|
[33] |
Andrusch A, Dabrowski P W, Klenner J, et al. PAIPline: Pathogen identification in metagenomic and clinical next generation sequencing samples [J]. Bioinformatics, 2018, 34: 715–721.
|
[34] |
Saingam P, Li B, Yan T. Use of amplicon sequencing to improve sensitivity in PCR-based detection of microbial pathogen in environmental samples [J]. Journal of Microbiological Methods, 2018, 149: 73–79.
|
[35] |
Peeters B, Herijgers P, Beuselinck K, et al. Comparison of PCRelectrospray ionization mass spectrometry with 16S rRNA PCR and amplicon sequencing for detection of bacteria in excised heart valves [J]. Journal of Clinical Microbiology, 2016, 54(11): 2825– 2831.
|
[36] |
Wu Z, Tsumura Y, Blomquist G, et al. 18S rRNA gene variation among common airborne fungi, and development of specific oligonucleotide probes for the detection of fungal isolates [J]. Applied and Environmental Microbiology, 2003, 69(9): 5389– 5394.
|
/
〈 |
|
〉 |