煤 – 焦 – 氢 – 铁产业链发展关键技术与战略思考

赵英杰, 易群, 王涛, 韩建超, 崔阳, 刘倩, 任忠凯, 刘元铭, 黄庆学

中国工程科学 ›› 2021, Vol. 23 ›› Issue (5) : 103-115.

PDF(860 KB)
PDF(860 KB)
中国工程科学 ›› 2021, Vol. 23 ›› Issue (5) : 103-115. DOI: 10.15302/J-SSCAE-2021.05.014
工程前沿
Orginal Article

煤 – 焦 – 氢 – 铁产业链发展关键技术与战略思考

作者信息 +

Key Technologies and Strategic Thinking for the Coal–Coking–Hydrogen–Steel Industry Chain in China

Author information +
History +

摘要

煤炭、焦化、钢铁等能源资源消耗型产业,是经济社会发展的重要基础,但也伴生高能耗和环境污染问题;随着碳达峰、碳中和目标的提出,统筹考虑资源禀赋、环境容量、产业基础等因素,构建绿色低碳且安全高效的煤炭、焦化、氢能、钢铁产业新体系,是加快推进我国能源生产与消费革命的重要举措。本文旨在梳理煤基制氢技术的发展现状,结合我国能源资源禀赋,焦化、钢铁、氢能产业现实要素基础,提出煤– 焦– 氢– 铁(气基直接还原铁)产业链发展的新思路。从经济性、能耗水平、碳排放等方面着手,对煤– 焦– 氢– 铁产业链中的5 种技术路径进行对比与评价,进而分析研判制氢技术耦合直接还原铁路径的发展潜力与战略选择;以山西省作为案例,具体阐述了煤– 焦– 氢– 铁产业链技术的发展目标与产业布局。研究建议,树立清洁低碳发展理念,依托煤– 焦– 氢– 铁产业链推进能源转型发展,制定煤– 焦– 氢– 铁产业集群整体发展规划,协同推进相关产业链的政策、科技、人才、市场融合。

Abstract

Energy resource-consuming industries such as coal, coking, and steel, are crucial for socio-economic development; however, they are also related to high energy consumption and environmental pollution. As carbon peak and carbon neutral goals were porposed, it becomes increasingly urgent to accelerate the revolution of energy production and consumption in China. To this end, we investigate the current status of coal-based hydrogen production technologies and propose a coal–coking–hydrogen–steel industrial chain in this study. The industrial chain is proposed considering the resource endowment, environmental capacity, and industry foundation in China,and it is expected to be green, low-carbon, secure, and highly efficient. Subsequently, we compare and evlatuate five technological paths for this industry chain from the aspects of economy, energy consumption, and carbon emissions, and analyze the potentials and path choices for coupling hydrogen production with direct reduced iron. Moreover, we elaborate the strategic goals and whole layout of the coal–coking–hydrogen–steel industry chain using Shanxi Province as an example. Furthermore, we suggest that a clean and lowcarbon development concept should be established to promote energy transformation in China, an overall development plan should be formulated for the industry chain, and policies, science, technologies, personnels, and market should be further integrated.

关键词

直接还原铁 / 产业链 / 能源转型 / 焦化 / 氢能

Keywords

direct reduced iron / industry chain / energy transition / coking / hydrogen energy

引用本文

导出引用
赵英杰, 易群, 王涛. 煤 – 焦 – 氢 – 铁产业链发展关键技术与战略思考. 中国工程科学. 2021, 23(5): 103-115 https://doi.org/10.15302/J-SSCAE-2021.05.014

参考文献

[1]
张利娜, 李辉, 程琳, 等. 国外钢铁行业低碳技术发展概况 [J]. 冶 金经济与管理, 2018 (5): 30–33. Zhang L N, Li H, Cheng L, et al. A review on low carbon technology development of in steel industry foreign [J]. Metallurgical Economics and Management, 2018 (5): 30–33.
[2]
Fan Z Y, Friedmann S J. Low-carbon production of iron and steel: Technology options, economic assessment, and policy [J]. Joule, 2021, 5(4): 829–862.
[3]
施永杰. 我国钢铁行业的大气污染及整治措施 [J]. 工程技术研 究, 2020, 5(16): 245–246. Shi Y J. Air pollution and remediation measures in China’s steel industry [J]. Metallurgical Collections, 2020, 5(16): 245–246.
[4]
2019年钢铁行业运行状况分析报告 [J]. 企业决策参考, 2020 (3): 1–10. Steel industry operating conditions analysis report 2019 [J]. Business Decision Reference, 2020 (3): 1–10.
[5]
World Steel Association. Steel statistical yearbook 2020 concise version [R]. Brussels: World Steel Association, 2021.
[6]
张华. 高炉炼铁和非高炉炼铁能耗比较 [J]. 科技创业家, 2014 (6): 142. Zhang H. Comparison of energy consumption between blast furnace and non-blast furnace ironmaking [J]. Technological Pioneers, 2014 (6): 142.
[7]
张建国. 直接还原铁工艺技术的对比分析论述 [J]. 资源再生, 2018 (2): 57–61. Zhang J G. Comparison and analysis of direct reduction of iron technology [J]. Resource Recycling, 2018 (2): 57–61.
[8]
Baig S. Cost effectiveness analysis of HYL and Midrex DRI technologies for the iron and steel-making industry [D]. Durham: Duke University(Master’s thesis), 2016.
[9]
胡俊鸽, 周文涛, 郭艳玲, 等. 先进非高炉炼铁工艺技术经济分 析 [J]. 鞍钢技术, 2012 (3): 7–13. Hu J G, Zhou W T, Guo Y L, et al. Economic analysis on advanced ironmaking processes by non-blast furnace [J]. Angang Technology, 2012 (3): 7–13.
[10]
周渝生, 钱晖, 齐渊洪, 等. 煤制气生产直接还原铁的联合工艺 方案 [J]. 钢铁, 2012, 47(11): 27–31. Zhou Y S, Qian H, Qi Y H, et al. Scheme of direct reduction iron production combined with coal gasification [J]. Iron & Steel, 2012, 47(11): 27–31.
[11]
Parisi D R, Laborde M A. Modeling of counter current moving bed gas-solid reactor used in direct reduction of iron ore [J]. Chemical Engineering Journal, 2004, 104(1–3): 35–43.
[12]
李健. 煤制气–气基竖炉联合工艺生产直接还原铁的技术经济 性分析 [J]. 中国废钢铁, 2017 (1): 38–43. Li J. Techno-economic analysis of the combined coal-to-gas-gasbased shaft furnace process for the production of direct reduced iron [J]. Iron & Steel Scrap of China, 2017 (1): 38–43.
[13]
雷秋晓, 史义存, 苏子义, 等. 制氢技术的现状及发展前景 [J]. 山 东化工, 2020, 49(8): 72–75. Lei Q X, Shi Y C, Su Z Y, et al. Status and development prospect of hydrogen production technology [J]. Shandong Chemical Industry, 2020, 49(8): 72–75.
[14]
王亚阁, 王丽霞. 焦炉煤气制氢工艺现状 [J]. 化工设计通讯, 2020, 46(8): 86. Wang Y G, Wang L X. Present situation of hydrogen production process from coke oven gas [J]. Chemical Engineering Design Communications, 2020, 46(8): 86.
[15]
张俊苓. 煤系中非常规天然气特征及综合研究分析 [J]. 冶金管 理, 2020 (19): 89–90. Zhang J L. Characterization of unconventional natural gas in coal system and comprehensive research analysis [J]. Metallurgical Industry Management, 2020 (19): 89–90.
[16]
Kosinov N, Hensen E J M. Reactivity, selectivity, and stability of zeolite-based catalysts for methane dehydroaromatization [J]. Advanced Materials, 2020, 32(44): 1–12.
[17]
Cetinkaya E, Dincer I, Naterer G F. Life cycle assessment of various hydrogen production methods [J]. International Journal of Hydrogen Energy, 2012, 37(3): 2071–2080.
[18]
Li J J, Cheng W J. Comparative life cycle energy consumption, carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification [J]. International Journal of Hydrogen Energy, 2020, 45(51): 27979–27993.
[19]
Bhandari R, Trudewind C A, Zapp P. Life cycle assessment of hydrogen production via electrolysis: A review [J]. Journal of Cleaner Production, 2014, 85(15): 151–163.
[20]
Li F, Chu M S, Tang J, et al. Life-cycle assessment of the coal gasification-shaft furnace-electric furnace steel production process [J]. Journal of Cleaner Production, 2021, 287: 1–12.
[21]
Burchart-Korol D. Life cycle assessment of steel production in Poland: A case study [J]. Journal of Cleaner Production, 2013, 54: 235–243.
[22]
Chen S Y, Fu X J, Chu M S, et al. Life cycle assessment of the comprehensive utilization of vanadium titano-magnetite [J]. Journal of Cleaner Production, 2015, 101: 122–128.
[23]
He H C, Guan H J, Zhu X, et al. Assessment on the energy flow and carbon emissions of integrated steelmaking plants [J]. Energy Reports, 2017, 3: 29–36.
[24]
Chen Q Q, Gu Y, Tang Z Y, et al. Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China [J]. Applied Energy, 2018, 220: 192–207.
[25]
山西省统计局. 2020年山西省统计年鉴 [R]. 太原: 山西省统计 局, 2020. Shanxi Provincial Bureau of Statistics. Statistical yearbook of Shanxi Province 2020 [R]. Taiyuan: Shanxi Provincial Bureau of Statistics, 2020.
[26]
高成亮, 王太炎. 利用焦炉煤气生产直接还原铁技术 [J]. 燃料 与化工, 2010, 41(6): 15–17. Gao C L, Wang T Y. Technology of producing direct-reduced iron with coke oven gas [J]. Fuel & Chemical Processes, 2010, 41(6): 15–17.
基金
中国工程院院地合作咨询项目“山西省煤焦氢铁产业链发展战略研究” (2019SX7)
PDF(860 KB)

Accesses

Citation

Detail

段落导航
相关文章

/