离散制造行业数字化转型与智能化升级路径研究

李新宇, 李昭甫, 高亮

中国工程科学 ›› 2022, Vol. 24 ›› Issue (2) : 64-74.

PDF(6303 KB)
PDF(6303 KB)
中国工程科学 ›› 2022, Vol. 24 ›› Issue (2) : 64-74. DOI: 10.15302/J-SSCAE-2022.02.008
新时期推进制造强国建设若干重大问题研究
Orginal Article

离散制造行业数字化转型与智能化升级路径研究

作者信息 +

Paths for the Digital Transformation and Intelligent Upgrade of China’s Discrete Manufacturing Industry

Author information +
History +

摘要

在传统离散制造业加快转型升级的背景下,发展智能制造将推进离散制造业提质增效、促进行业由大变强,因此数字化转型与智能化升级成为必然选择。我国离散制造各细分行业存在极大的差异性,相应的数字化转型与智能化升级路径也存在多样性,因而需要结合企业实际探讨具体实施举措。本文提炼了离散制造行业的典型特性,梳理了离散制造行业数字化转型与智能化升级面临的挑战,阐述了包括先进制造技术、新一代信息技术、新一代人工智能在内的共性关键技术;系统调研了我国离散型制造企业数字化转型与智能化升级的4 个典型案例,力求呈现领域前沿应用进展,进而提出了突破智能制造关键使能技术,研发智能制造装备,建设数字化、智能化车间和工厂,提供数字化、智能化服务,构建标准与安全体系等重点发展任务。研究建议,加快示范应用,突出“中国制造”,培育高新技术人才,制定相应的法律法规,以此推动我国离散制造行业的高质量发展。

Abstract

The discrete manufacturing industry in China is currently being transformed and upgraded. Digital transformation and intelligent upgrade is an inevitable choice for China’s discrete manufacturing industry, as intelligent manufacturing can promote the quality, efficiency, and competitiveness of discrete manufacturing. The sub-sectors of discrete manufacturing in China differs significantly and requires diversified paths for digital transformation and intelligent upgrade. In this paper, we first summarize the typical characteristics of the discrete manufacturing industry, explore the challenges regarding the digital transformation and intelligent upgrade of the industry, and elaborate the common key technologies including advanced manufacturing, new-generation information, and new-generation artificial intelligence. Subsequently, we investigate four typical cases to present the frontier application progress in the field in China, and propose the following key development tasks: (1) achieving breakthroughs in keys enabling technologies for intelligent manufacturing, (2) developing intelligent manufacturing equipment, (3) building digital and intelligent workshops and factories, (4) providing digital and intelligent services, and (5) building standards and safety systems. Furthermore, it is necessary to accelerate pilot application, highlight domestication, increase the reserve of high-tech talents, and formulate relevant laws and regulations, to promote the high-quality development of China’s discrete manufacturing industry.

关键词

智能制造 / 离散制造行业 / 数字化转型 / 智能化升级 / 拓扑优化 / 车间调度 深度学习 /

Keywords

intelligent manufacturing / discrete manufacturing industry / digital transformation and intelligent upgrade / topological optimization / workshop scheduling / deep learning

引用本文

导出引用
李新宇, 李昭甫, 高亮. 离散制造行业数字化转型与智能化升级路径研究. 中国工程科学. 2022, 24(2): 64-74 https://doi.org/10.15302/J-SSCAE-2022.02.008

参考文献

[1]
李培根, 高亮. 智能制造概论 [M]. 北京: 清华大学出版社, 2021. Li P G, Gao L. Introduction to intelligent manufacturing [M]. Beijing: Tsinghua University Press, 2021
[2]
周济, 李培根. 智能制造导论 [M]. 北京: 高等教育出版社, 2021. Zhou J, Li P G. Introduction to intelligent manufacturing [M]. Beijing: Higher Education Press, 2021.
[3]
周济. 智能制造——“中国制造2025” 的主攻方向 [J]. 中国机械 工程, 2015, 26(17): 2273–2284. Zhou J. Intelligent manufacturing: Main direction of “Made in China 2025” [J]. China Mechanical Engineering, 2015, 26(17): 2273–2284.
[4]
Gao L, Shen W, Li X. New trends in intelligent manufacturing [J]. Engineering, 2019, 5(4): 619–620.
[5]
Fakhri A B, Mohammed S L, Choi I K, et al. Industry 4.0: Architecture and equipment revolution [J]. Computers, Materials & Continua, 2021, 66(2): 1175–1194.
[6]
García Á, Bregon A, Martínez-Prieto M A. A non-intrusive industry 4.0 retrofitting approach for collaborative maintenance in traditional manufacturing [J]. Computers & Industrial Engineering, 2022, 164: 1–12.
[7]
Zhou Y, Zang J, Miao Z, et al. Upgrading pathways of intelligent manufacturing in China: Transitioning across technological paradigms [J]. Engineering, 2019, 5(4): 691–701.
[8]
卢秉恒, 邵新宇, 张俊, 等. 离散型制造智能工厂发展战略 [J]. 中 国工程科学, 2018, 20(4): 44–50. Lu B H, Shao X Y, Zhang J, et al. Development strategy for intelligent factory in discrete manufacturing [J]. Strategic Study of CAE, 2018, 20(4): 44–50.
[9]
袁晴棠, 殷瑞钰, 曹湘洪, 等. 面向2035的流程制造业智能化 目标, 特征和路径战略研究 [J]. 中国工程科学, 2020, 22(3): 148–156. Yuan Q T, Yin R Y, Cao X H, et al. Strategic research on the goals, characteristics, and paths of intelligentization of process manufacturing industry for 2035 [J]. Strategic Study of CAE, 2020, 22(3): 148–156.
[10]
庄存波, 刘检华, 隋秀峰, 等. 工业互联网推动离散制造业转型 升级的发展现状, 技术体系及应用挑战 [J]. 计算机集成制造系 统, 2019, 25(12): 3061–3069. Zhuang C B, Liu J H, Sui X F, et al. Status, technical architecture and application challenges for transformation and updating of discrete manufacturing industry driven by industrial Internet [J]. Computer Integrated Manufacturing Systems, 2019, 25(12): 3061– 3069.
[11]
李伯虎, 柴旭东, 张霖, 等. 新一代人工智能技术引领下加快发展 智能制造技术, 产业与应用 [J]. 中国工程科学, 2018, 20(4): 73–78. Li B H, Cai X D, Zhang L, et al. Accelerate the development of intelligent manufacturing technologies, industries, and application under the guidance of a new-generation of artificial intelligence technology [J]. Strategic Study of CAE, 2018, 20(4): 73–78.
[12]
Zhong R Y, Xu X, Klotz E, et al. Intelligent manufacturing in the context of industry 4.0: A review [J]. Engineering, 2017, 3(5): 616–630.
[13]
Liu Q H, Li X Y, Gao L. A novel MILP model based on the topology of a network graph for process planning in an intelligent manufacturing system [J]. Engineering, 2021, 7(6): 807–817.
[14]
Li H, Luo Z, Gao L, et al. Topology optimization for functionally graded cellular composites with metamaterials by level sets [J]. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 340–364.
[15]
Sha W, Xiao M, Zhang J, et al. Robustly printable freeform thermal metamaterials [J]. Nature Communications, 2021, 12(1): 1–8.
[16]
Gao Y, Gao L, Li X, et al. A zero-shot learning method for fault diagnosis under unknown working loads [J]. Journal of Intelligent Manufacturing, 2020, 31(4): 899–909.
[17]
Peng K, Pan Q K, Gao L, et al. A multi-start variable neighbourhood descent algorithm for hybrid flowshop rescheduling [J]. Swarm and Evolutionary Computation, 2019, 45: 92–112.
[18]
Kusiak A. Smart manufacturing must embrace big data [J]. Nature, 2017, 544(7648): 23–25.
[19]
Zhou J, Li P G, Zhou Y H, et al. Toward new-generation intelligent manufacturing [J]. Engineering, 2018, 4(1): 11–20.
[20]
Zhou J, Zhou Y, Wang B C, et al. Human-cyber-physical systems (HCPSs) in the context of new-generation intelligent manufacturing [J]. Engineering, 2019, 5(4): 624–636.
[21]
Li W, Chen S, Peng X, et al. A comprehensive approach for the clustering of similar-performance cells for the design of a lithiumion battery module for electric vehicles [J]. Engineering, 2019, 5(4): 795–802.
[22]
Gao Y, Li X, Wang X V, et al. A review on recent advances in vision-based defect recognition towards industrial intelligence [EB/ OL]. (2021-05-21)[2022-01-10]. https://www.sciencedirect.com/ science/article/abs/pii/S0278612521001059?dgcid=rss_sd_all.
[23]
Zhao C, Liu G, Shen W, et al. A multi-representation-based domain adaptation network for fault diagnosis [J]. Measurement, 2021, 182(1): 1–12.
[24]
Gao Y, Gao L, Li X, et al. A semi-supervised convolutional neural network-based method for steel surface defect recognition [J]. Robotics and Computer-Integrated Manufacturing, 2020, 61: 1–12.
[25]
Tao F, Qi Q, Wang L, et al. Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: Correlation and comparison [J]. Engineering, 2019, 5(4): 653–661.
[26]
Tao F, Qi Q. Make more digital twins [J]. Nature, 2019, 573(7775): 490–491.
[27]
Chen J H, Hu P C, Zhou H C, et al. Toward intelligent machine tool [J]. Engineering, 2019, 5(4): 679–690.
[28]
Peng K, Li X, Gao L, et al. A new joint data-model driven dynamic scheduling architecture for intelligent workshop [C]. Erie: ASME 2019 14th International Manufacturing Science and Engineering Conference, 2019.
[29]
周济. 智能制造要培养三类人才三支队伍 [EB/OL]. (2021- 12-09)[2021-12-28]. http://www.wimc.org.cn/news_show. aspx?id=501. Zhou J. Intelligent manufacturing needs to cultivate three types of talents and three teams [EB/OL]. (2021-12-09)[2021-12-28]. http://www.wimc.org.cn/news_show.aspx?id=501.
基金
中国工程院咨询项目“新时期智能制造若干重大问题研究”(2021-HZ-11)
PDF(6303 KB)

Accesses

Citation

Detail

段落导航
相关文章

/