智能制造评价理论研究现状及未来展望
Research Status and Future Prospects of Intelligent Manufacturing Evaluation Theory
智能制造是实现制造强国的重要途径,随着我国智能制造进入全面推广阶段,针对智能制造发展水平开展科学评价成为现实需求。本文系统梳理了近年来有关智能制造评价理论的研究成果,从智能制造的关键技术、系统全局、行业领域 3 个视角归纳总结了智能制造评价体系的研究情况,对比分析了智能制造评价研究中常用的评价方法;剖析智能制造评价研究方面存在的主要问题,针对性探讨领域的未来研究方向。研究认为,现行智能制造评价的标准、流程、指标体系、应用等方面存在欠缺,需要从评价范式、评价体系、新技术融合等方面加以改进完善,以推进智能制造评价理论研究并指导智能制造发展。具体而言,健全标准设计,建立智能制造评价范式;优化指标体系,丰富关键核心评价内容;强化新技术融合,推进理论实践协同并进。
Intelligent manufacturing is crucial for constructing a powerful manufacturing country. As China’s intelligent manufacturing enters a comprehensive promotion stage, the scientific evaluation of intelligent manufacturing becomes a practical demand. This paper provides a systematic survey on the intelligent manufacturing evaluation theories in recent years. The evaluation index systems of intelligent manufacturing are classified and summarized from three perspectives, that is, key technology, overall system, and specific sector. Furthermore, the methods commonly used in intelligent manufacturing evaluation are compared and analyzed. This paper also investigates the major problems regarding intelligent manufacturing evaluation and discusses the future research directions of the field. Currently, there are deficiencies in the standards, processes, index system, and application of intelligent manufacturing evaluation. It is necessary to improve the evaluation paradigm, evaluation system, and new technology integration, so as to promote the research of intelligent manufacturing evaluation theories and guide the development of intelligent manufacturing. Specifically, China should improve the standards design to establish an intelligent manufacturing evaluation paradigm, optimize the index system to enrich the key evaluation content, strengthen the integration of new technologies, and promote the synergy of theory and practice.
智能制造 / 评价理论 / 指标体系 / 评价范式 / 新技术融合
intelligent manufacturing / evaluation theory / index system / evaluation paradigm / new technology integration
[1] |
周济. 智能制造——“中国制造2025”的主攻方向 [J]. 中国机械 工程, 2015, 26(17): 2273–2284. Zhou J. Intelligent manufacturing: Main direction of “Made in China 2025” [J]. China Mechanical Engineering, 2015, 26(17): 2273–2284.
|
[2] |
钟志华, 臧冀原, 延建林, 等. 智能制造推动我国制造业全面创 新升级 [J]. 中国工程科学, 2020, 22(6): 136–142. Zhong Z H, Zang J Y, Yan J L, et al. Intelligent manufacturing promotes the comprehensive upgrading and innovative growth of China’s manufacturing industry [J]. Strategic Study of CAE, 2020, 22(6): 136–142.
|
[3] |
Rauch E, Dallasega P, Unterhofer M. Requirements and barriers for introducing smart manufacturing in small and medium-sized enterprises [J]. IEEE Engineering Managemant Review, 2019, 47(3): 87–94.
|
[4] |
刘强. 智能制造理论体系架构研究 [J]. 中国机械工程, 2020, 31(1): 24–36. Liu Q. Study on architecture of intelligent manufacturing theory [J]. China Mechanical Engineering, 2020, 31(1): 24–36.
|
[5] |
Wang B C, Tao F, Fang X D, et al. Smart manufacturing and intelligent manufacturing: A comparative review [J]. Engineering, 2021, 7(6): 738–757.
|
[6] |
Zheng T, Ardolino M, Bacchetti A, et al. The applications of Industry 4.0 technologies in manufacturing context: A systematic literature review [J]. International Journal of Production Research, 2021, 59(6): 1922–1954.
|
[7] |
Alcácer V, Cruz-Machadoab V. Scanning the Industry 4.0: A literature review on technologies for manufacturing systems [J]. Engineering Science and Technology, an International Journal, 2019, 22(3): 899–919.
|
[8] |
Zhou J, Li P G, Zhou Y H, et al. Toward new-generation intelligent manufacturing [J]. Engineering, 2018, 4(1): 11–20.
|
[9] |
Chen D F, Heyer S, Ibbotson S, et al. Direct digital manufacturing: definition, evolution, and sustainability implications [J]. Journal of Cleaner Production, 2015, 107: 615–625.
|
[10] |
Gokalp E, Martinez V. Digital transformation capability maturity model enabling the assessment of industrial manufacturers [J]. Computers in Industry, 2021, 132: 1–12.
|
[11] |
Li J, Qiu J J, Zhou Y, et al. Study on the reference architecture and assessment framework of industrial Internet platform [J]. IEEE Access, 2020, 8: 164950–164971.
|
[12] |
李伯虎, 张霖, 王时龙, 等. 云制造——面向服务的网络化制造 新模式 [J]. 计算机集成制造系统, 2010, 16(1): 1–7. Li B H, Zhang L, Wang S L, et al. Cloud manufacturing: A new service-oriented networked manufacturing model [J]. Computer Integrated Manufacturing Systems, 2010, 16(1): 1–7.
|
[13] |
贺可太, 朱道云. 云制造服务质量评价 [J]. 计算机集成制造系 统, 2018, 24(1): 53–62. He K T, Zhu D Y. Quality evaluation of cloud manufacturing service [J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 53–62.
|
[14] |
Yang X X, Wang S L, Yang B, et al. A service satisfaction-based trust evaluation model for cloud manufacturing [J]. International Journal of Computer Integrated Manufacturing, 2019, 32(6): 533–545.
|
[15] |
Hu Y J, Wu L Z, Pan X Q, et al. Comprehensive evaluation of cloud manufacturing service based on fuzzy theory [J]. International Journal of Fuzzy Systems, 2021, 23: 1755–1764.
|
[16] |
Li B H, Hou B C, Wen T Y, et al. Applications of artificial intelligence in intelligent manufacturing: a review [J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 86–96.
|
[17] |
Castelo-Branco I, Cruz-Jesus F, Oliveira T. Assessing Industry 4.0 readiness in manufacturing: Evidence for the European Union [J]. Computers in Industry, 2019, 107: 22–32.
|
[18] |
韩雅婷, 吴洁倩, 马敬玲, 等. 基于区间数Promethee的智能制造 能力评价研究 [J]. 现代制造工程, 2021 (3): 1–9. Han Y T, Wu J Q, Ma J L, et al. Evaluation on intelligent manufacturing capability based on interval number Promethee method [J]. Modern Manufacturing Engineering, 2021 (3): 1–9.
|
[19] |
李清, 唐骞璘, 陈耀棠, 等. 智能制造体系架构、参考模型与标准 化框架研究 [J]. 计算机集成制造系统, 2018, 24(3): 539–549. Li Q, Tang Q L, Chen Y T, et al. Smart manufacturing standardization: Reference model and standards framework [J]. Computer Integrated Manufacturing Systems, 2018, 24(3): 539–549.
|
[20] |
Lee J, Jun S, Chang T W, et al. A smartness assessment framework for smart factories using analytic network process [J]. Sustainability, 2017, 9(5): 1–15.
|
[21] |
杨慧, 宋华明, 俞安平. 服务型制造模式的竞争优势分析与实 证研究——基于江苏200家制造企业数据 [J]. 管理评论, 2014, 26(3): 89–99. Yang H, Song H M, Yu A P. Theoretical analysis and empirical study on competitive advantages of service-oriented manufacturing: Based on the data of 200 manufacturers in Jiangsu Province [J]. Management Review, 2014, 26(3): 89–99.
|
[22] |
Li L, Mao C, Sun H, et al. Digital twin driven green performance evaluation methodology of intelligent manufacturing: Hybrid model based on fuzzy rough-sets AHP, multistage weight synthesis, and Promethee II [J]. Complexity, 2020 (6): 1–24.
|
[23] |
Li L H, Qu T, Liu Y, et al. Sustainability assessment of intelligent manufacturing supported by digital twin [J]. IEEE Access, 2020, 8: 174988–175008.
|
[24] |
袁晴棠, 殷瑞钰, 曹湘洪, 等. 面向2035的流程制造业智能化 目标、特征和路径战略研究 [J]. 中国工程科学, 2020, 22(3): 148–156. Yuan Q T, Yin R Y, Cao X H, et al. Strategic research on the goals, characteristics, and paths of intelligentization of process manufacturing industry for 2035 [J]. Strategic Study of CAE, 2020, 22(03): 148–156.
|
[25] |
Schumacher A, Erol S, Sihn W. A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises [J]. Procedia CIRP, 2016, 52: 161–166.
|
[26] |
张金隆, 吴珊, 龚业明. 中国智能机械制造评价及发展研究 [J]. 中国机械工程, 2020, 31(4): 451–458. Zhang J L, Wu S, Gong Y M. Research on evaluation and development of intelligent machinery manufacturing in China [J]. China Mechanical Engineering, 2020, 31(4): 451–458.
|
[27] |
Qian F, Zhong W M, Du W L. Fundamental theories and key technologies for smart and optimal manufacturing in the process industry [J]. Engineering, 2017, 3(2): 154-160.
|
[28] |
郭芷洛. 流程型企业智能制造能力分析及评价研究 [D]. 北京: 北京邮电大学(硕士学位论文), 2020. Guo Z L. Research on intelligent manufacturing capability analysis and evaluation of process enterprises [D]. Beijing: Beijing University of Posts and Telecommunications(Master’s thesis), 2020.
|
[29] |
Yin S, Liu L, Hou J. A multivariate statistical combination forecasting method for product quality evaluation [J]. Information Sciences, 2016, 355–356: 229–236.
|
[30] |
Zhu L, Johnsson C , Varisco M, et al. Key performance indicators for manufacturing operations management: Gap analysis between process industrial needs and ISO 22400 standard [J]. Procedia Manufacturing, 2018, 25: 82–88.
|
[31] |
单志广. 国家制造业智能化战略问题研究 [R]. 北京: 国家信息 中心, 2018. Shan Z G. Research on intelligent strategy of national manufacturing industry [R]. Beijing: State Information Center, 2018.
|
[32] |
Leng J W, Zhang H, Yan D X, et al. Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop [J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10: 1155–1166.
|
/
〈 |
|
〉 |