基于场反位形的磁约束氘氘脉冲聚变中子源方案设计

潘垣, 王之江, 武松涛, 张明, 陈志鹏, 饶波, 朱平, 杨勇, 丁永华

中国工程科学 ›› 2022, Vol. 24 ›› Issue (3) : 205-213.

PDF(1403 KB)
PDF(1403 KB)
中国工程科学 ›› 2022, Vol. 24 ›› Issue (3) : 205-213. DOI: 10.15302/J-SSCAE-2022.03.021
工程前沿
Orginal Article

基于场反位形的磁约束氘氘脉冲聚变中子源方案设计

作者信息 +

Project Design of a Pulsed D-D Fusion Neutron Source Based on Field Reversed Configuration

Author information +
History +

摘要

聚变中子源可以真实反映材料在聚变中子辐照下的特性变化,对于开展聚变堆材料测试具有重要意义。基于加速器打靶原理的国际聚变材料辐照装置(IFMIF)与理想聚变中子源在聚变中子能谱等方面仍有一定差异,因此需对聚变中子源方案进行新的思索。本文围绕磁约束聚变中子源开展了磁场位形、加热方案设计与相关计算,分析了场反等离子体在两级级联磁压缩后的等离子体温度、密度演化过程及相应的中子产额,并研究了考虑双流体效应与有限拉莫尔半径效应后场反等离子体倾斜模、旋转模等磁流体不稳定性的抑制情况,最终给出了氘氘脉冲聚变中子源的关键物理参数。研究结果表明,该中子源有望获得年均2 MW/m2以上的高通量密度的聚变中子,能够满足商业聚变示范堆材料测试要求;经功率估算显示,基于场反位形进行两级级联磁压缩的新型聚变中子源方案还具备成为氘氘脉冲聚变能源的应用前景。

Abstract

The fusion neutron source is of great significance for conducting material testing for future fusion reactors, as it can genuinely reflect the change of material properties under fusion neutron irradiation. The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-driven neutron source. It still has some differences from the ideal fusion neutron source in terms of fusion neutron energy spectrum, which has led to the reconsideration of the fusion neutron source approach. In this paper, the magnetic field configuration, heating scheme design, and related calculations are carried out regarding the fusion neutron source. The plasma temperature, density evolution process, and the corresponding neutron yield of the field reversed configuration (FRC) plasma after two-stage cascade magnetic compression are analyzed, and the suppression of the magnetic fluid instabilities such as tilted and rotating modes of the FRC plasma after considering the two-fluid effect and the finite Larmor radius effect are studied. The fundamental physical parameters of the fusion neutron source are finally given. The calculation results show that the neutron source is expected to obtain fusion neutrons with an annual average power density higher than 2 MW/m2, which can meet the requirements of material testing of the demonstration reactors (DEMO). The power estimation also shows that the scheme has the potential to become an energy source based on the pulsed deuterium-deuterium fusion.

关键词

聚变中子源 / 场反等离子体 / 磁压缩 / 氘氘反应

Keywords

fusion neutron source / field reversal configuration plasma / magnetic compression / deuterium-deuterium fusion

引用本文

导出引用
潘垣, 王之江, 武松涛. 基于场反位形的磁约束氘氘脉冲聚变中子源方案设计. 中国工程科学. 2022, 24(3): 205-213 https://doi.org/10.15302/J-SSCAE-2022.03.021

参考文献

[1]
Perkins F W, Post D E, Uckan N A, et al. Chapter 1: Overview and summary [J]. Nuclear Fusion, 1999, 39: 2137‒2174.
[2]
Shimada M, Campbell D J, Mukhovatov V, et al. Chapter 1: Overview and summary [J]. Nuclear Fusion, 2007, 47: 1‒17.
[3]
Zinkle S J, Möslang A. Evaluation of irradiation facility options for fusion materials research and development [J]. Fusion Engineering and Design, 2013, 88(6‒8): 472‒482.
[4]
Kotelnikov I, Chen Z, Bagryansky P, et al. Summary of the 2nd international workshop on gas-dynamic trap based fusion neutron source (GDT-FNS) [J]. Nuclear Fusion, 2020, 60(6): 067001.
[5]
Ivanov A A, Prikhodko V V. Gas-dynamic trap: An overview of the concept and experimental results [J]. Plasma Physics and Controlled Fusion, 2013, 55 (6): 063001.
[6]
Gota H, Binderbauer M W, Tajima T, et al. Overview of C-2W: High temperature, steady-state beam-driven field-reversed configuration plasmas [J]. Nuclear Fusion, 2021, 61(10): 106039.
[7]
Furth H P, Yoshikawa S. Adiabatic compression of tokamak discharges [J]. The Physics of Plasmas, 1970, 13(10): 2593‒2596.
[8]
Spencer R, Tuszewski M, Linford R. Adiabatic compression of elongated field‐reversed configurations [J]. The Physics of Fluids, 1983, 26(6): 1564‒1568.
[9]
Bol K, Ellis R, Eubank H, et al. Adiabatic compression of the tokamak discharge [J]. Physical Review Letters, 1972, 29(22): 1495.
[10]
Hirano Y, Sekiguchi J, Matsumoto T, et al. A DT fusion reactor design in field-reversed configuration using normal conductive coils [J]. Nuclear Fusion, 2017, 58(1): 016004.
[11]
Binderbauer M, Tajima T, Steinhauer L, et al. A high performance field-reversed configuration [J]. Physics of Plasmas, 2015, 22(5): 056110.
[12]
Trask E. Overview of Tri Alpha Energy´s experimental program and recent progress on transport analysis [C]. Irvine: US-Japan Workshop on Compact Torus, 2016.
[13]
Wesson J. Tokamks (fourth edition) [M]. New York: Oxford University Press, 2011.
[14]
Nations M, Gupta D, Bolte N, et al. Development of a Zeff diagnostic using visible and near-infrared bremsstrahlung light for the C-2W field-reversed configuration plasma [J]. Review of Scientific Instruments, 2018, 89: 10D130.
[15]
Sovinec C R, Glasser A H, Gianakon T A, et al. Nonlinear magnetohydrodynamics simulation using high-order finite elements [J]. Journal of Computational Physics, 2004, 195 (1): 355‒386.
[16]
Guo H Y, Binderbauer M W, Tajima T, et al. Achieving a long-lived high-beta plasma state by energetic beam injection [J]. Nature Communications, 2015, 6(1): 6897.
[17]
Barnes D C, Belova E V, Davidson R C. Field-Reversed Configuration (FRC) equilibrium and stability (IAEA-CSP—19/CD) [R]. Vienna: International Atomic Energy Agency (IAEA), 2003.
[18]
Steinhauer L C. Review of field-reversed configurations [J]. Physics of Plasmas, 2011, 18(7): 070501.
[19]
秦运文 . 托卡马克实验的物理基础第一版 [M]. 北京 : 原子能出版社 , 2011 .
基金
国家重点研发计划项目(2017YFE0301805;2017YFE0301804)
PDF(1403 KB)

Accesses

Citation

Detail

段落导航
相关文章

/