
“互联网+”现代种业发展战略研究
Development Strategy of Internet Plus Modern Seed Industry
种业是农业的“芯片”,种业现代化是农业现代化的重要标志,“互联网+”现代种业不仅是现代农业的重要应用场景, 也是种业科技创新的集中体现。本文基于对“互联网+”现代种业的概念界定与主要特点的阐述,结合实地考察与专家咨询, 具体分析了面向政府部门、科研单位、繁种基地等不同主体的应用场景的特点、支撑技术、典型应用,深度分析了当前我国 “互联网+”现代种业在基础设施、数据共享、关键技术、商业化体系等方面的瓶颈与需求,并据此提出了我国“互联网+” 现代种业的发展战略、技术路线图和重大示范工程建议,为现代种业发展提供科学参考。研究认为,现阶段迫切需要加快种 质资源大数据平台建设工程、“互联网+”现代种业基地新基建示范工程、“互联网+”现代种业数据共享平台建设工程和种业 大数据智能服务工程等重大应用示范工程,推动种业智能装备研发制造产业、商业化育种软件产业的发展,全面推进现代种 业的智能化发展。
The seed industry is the chip of agriculture and seed industry modernization is a significant symbol for agricultural modernization. Internet Plus Modern Seed Industry is an important application scenario of modern agriculture and a concentrated embodiment of scientific and technological innovation in the seed industry. Based on the concept definition and main characteristics of Internet Plus Modern Seed Industry and using field investigation and expert consultation, this study analyzes the characteristics, supporting technologies, and typical applications of application scenarios for different subjects such as government departments, scientific research institutions, and breeding bases. The challenges and demand for the infrastructure, data sharing, key technologies, and commercialization system of the Internet Plus Modern Seed Industry in China are analyzed. Additionally, we propose the development strategy, technical roadmap, and major demonstration projects, to provide a scientific reference for the development of modern seed industry. Specifically, major demonstration projects are urgently required for big data platforms for germplasm resources, new infrastructure for Internet Plus Modern Seed Industry bases, Internet Plus Modern Seed Industry data sharing platforms, and big data intelligent services for the seed industry. Moreover, the intelligent equipment research, development, and manufacturing industry as well as the commercialized breeding software industry should be encouraged to comprehensively promote the intelligent development of modern seed industry.
互联网+ / 现代种业 / 应用场景 / 商业化育种 / 重大示范工程
Internet plus / modern seed industry / application scenarios / commercialized breeding / major demonstration project
[1] |
蒋和平 , 杨东群 , 王晓君 . 新时期中国粮食安全问题与对策研究 [J]. 经济研究参考 , 2022 3 : 2 .
|
[2] |
Wallace J G, Rodgers-Melnick E, Buckler E S. On the road to breeding 4.0: Unraveling the good, the bad, and the boring of crop quantitative genomics [J]. Annual Review of Genetics, 2018, 52(1): 421‒444.
|
[3] |
景海春 , 田志喜 , 李家洋 , 等 . 分子设计育种的科技问题及其展望概论 [J]. 中国科学: 生命科学 , 2021 , 51 10 : 1356 ‒ 1365 .
|
[4] |
Reuzeau C, Pen J, Frankard V, et al. TraitMill: A discovery engine for identifying yield-enhancement genes in cereals [J]. Molecular Plant Breeding, 2005 (5): 753‒759.
|
[5] |
Brown T B, Cheng R Y, Sirault X R, et al. Trait capture: Genomic and environment modelling of plant phenomic data [J]. Current Opinion in Plant Biology, 2014, 18: 73‒79.
|
[6] |
Li L W. A new innate sensor for an ancient molecular pattern [J]. Science China Life Sciences, 2014, 57(12): 1236‒1237.
|
[7] |
Committee on Science Breakthrough: A Strategy for Food and Agricultural Research. Science breakthroughs to advance food and agricultural research by 2030 [M]. Washington DC: National Academies Press, 2019.
|
[8] |
Lee U, Chang S, Putra G A, et al. An automated, highthroughput plant phenotyping system using machine learningbased plant segmentation and image analysis [J]. PLoS One, 2018, 13(4): 1‒10.
|
[9] |
Pound M P, Atkinson J A, Townsend A J, et al. Deep machine learning provides state-of-the-art performance in image based plant phenotyping [J]. GigaScience, 2017, 6(10): 83.
|
[10] |
万建民 . 开展联合协作 占领生物育种制高点 [J]. 当代生态农业 , 2010 Z1: 77.
|
[11] |
Huang X H, Wei X H, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces [J]. Nature Genetics, 2010, 42(11): 961‒967.
|
[12] |
张兴平 , 钱前 , 张嘉楠 , 等 . 分子植物育种助推南繁种业转型升级 [J]. 中国农业科学 , 2021 , 54 18 : 3789 ‒ 3804 .
|
[13] |
李菊丹 . 我国农业植物新品种保护问题与对策研究——以品种权申请授权数据统计为基础进行分析 [J]. 知识产权 , 2019 5 : 70 ‒ 82 .
|
[14] |
赵久然 , 王元东 , 邢锦丰 , 等 . 高产优质、多抗广适玉米品种京科968的培育与应用 [C]. 武汉 : 第十九届中国作物学会学术年会 , 2020 .
|
[15] |
田立平 , 单福华 , 赵昌平 , 等 . 高产多抗小麦新品种——京花12号 [J]. 麦类作物学报 , 2019 , 39 7 : 883 .
|
[16] |
张颖 , 郭新宇 , 赵春江 , 等 . 信息技术与智能装备助力智能设计育种 [J]. 吉林农业大学学报 , 2021 , 43 2 : 119 ‒ 129 .
|
[17] |
朱亮 , 孟宪学 , 赵瑞雪 , 等 . 国家农业科学数据共享中心资源建设探析 [J]. 数字图书馆论坛 , 2017 11 : 15 ‒ 20 .
|
[18] |
Gui S, Yang L, Li J, et al. ZEAMAP, a comprehensive database adapted to the maize multi-omics era [J]. iScience, 2020, 23(6): 1‒10.
|
[19] |
郭庆华 , 吴芳芳 , 庞树鑫 , 等 . Crop 3D—基于激光雷达技术的作物高通量三维表型测量平台 [J]. 中国科学: 生命科学 , 2016 , 46 10 : 1210 ‒ 1221 .
|
[20] |
金种子育种云平台发布 助力育种管理工作升级为云服务 [J]. 蔬菜 , 2016 2 : 12 .
|
[21] |
姚立民 , 李明 , 谢景鑫 , 等 . 无人机低空遥感在作物育种中的应用研究进展 [J]. 湖南农业科学 , 2020 11 : 108 ‒ 112 .
|
[22] |
黄爱萍 , 张梅 , 林海清 , 等 . 福建作物种质资源与共享利用问卷调研 [J]. 中国农学通报 , 2018 , 34 29 : 123 ‒ 130 .
|
/
〈 |
|
〉 |