有色金属工业智能模型库构建方法及应用

阳春华, 刘一顺, 黄科科, 孙备, 李勇刚, 陈晓方, 桂卫华

中国工程科学 ›› 2022, Vol. 24 ›› Issue (4) : 188-201.

PDF(38242 KB)
PDF(38242 KB)
中国工程科学 ›› 2022, Vol. 24 ›› Issue (4) : 188-201. DOI: 10.15302/J-SSCAE-2022.04.013
流程制造工业软件发展战略研究
Orginal Article

有色金属工业智能模型库构建方法及应用

作者信息 +

Intelligent Model Library for Nonferrous Metal Industry: Construction Method and Application

Author information +
History +

摘要

有色金属工业是我国实体经济的重要基础,在国民经济和国防建设中占有关键地位。工业软件作为有色金属工业高质量发展的核心要素之一,与深入实施国家软件发展战略相关联。本文针对有色金属工业因知识模型缺失而极大限制行业工业软件发展的迫切问题,提出了有色金属工业智能模型库构建方法。从元模型驱动工程出发,定义了有色冶金元模型及其属性特点,提出了基于MODELING架构的元建模方法;设计了基于工业互联网的有色金属智能模型库总体架构、多语言融合的模型集成敏捷开发环境、多场景黑盒复用的元模型封装体系,构建了基于“五层两维”分类标准、领域知识图谱的元模型全生命周期管理平台。立足有色冶金工艺机理、操作经验、智能方法等方面的长期积淀,开发了有色金属工业智能模型库。通过两个有色冶金典型场景的应用案例,展示了有色金属智能模型库在工程应用中对提升智能化水平发挥的良好作用。有色金属工业智能模型库为行业工业软件的发展提供了核心知识支撑,将在提升有色金属工业智能制造水平、加快有色金属强国建设进程方面起到基础支撑作用。

Abstract

Nonferrous metal industry is the foundation of China's substantial economy and plays a key role in national economy and defense construction. Industrial software is crucial for the high-quality development of the nonferrous metal industry and is associated with the in-depth implementation of national software development strategies. Currently, the industrial software development in the nonferrous metal industry is significantly restricted by the lack of knowledge models. Hence, we propose a method for constructing an intelligent model library for the nonferrous metal industry. Considering meta-model-driven engineering, we define the nonferrous metallurgical meta-model and its attributes, and propose a meta-modeling method based on the MODELING architecture. Additionally, we design an overall architecture for the intelligent model library based on industrial Internet, an agile modeldevelopment environment integrating multiple languages, and a meta-model encapsulation system based on multi-scenario black-box reuse. Moreover, a meta-model full lifecycle management platform is constructed based on a five-layer two-dimension classification standard and the domain knowledge graph. The intelligent model library for the nonferrous metal industry is developed based on the long-term accumulation of nonferrous metallurgy process mechanism, operating experiences, and intelligent methods. The good role of intelligent model library in improving the intelligent level in engineering applications is presented through the application of two typical nonferrous metallurgical scenarios. The intelligent model library of the nonferrous metal industry provides a core knowledge support for the development of industrial software and plays a fundamental role in promoting smart manufacturing and strengthening the nonferrous metal industry.

关键词

有色金属工业 / 工业软件 / 元模型 / 智能模型库 / 工业互联网

Keywords

nonferrous metal industry / industrial software / meta-model / intelligent model library / industrial Internet

引用本文

导出引用
阳春华, 刘一顺, 黄科科. 有色金属工业智能模型库构建方法及应用. 中国工程科学. 2022, 24(4): 188-201 https://doi.org/10.15302/J-SSCAE-2022.04.013

参考文献

[1]
袁小锋 , 桂卫华 , 陈晓方 , 等 . 人工智能助力有色金属工业转型升级 [J]. 中国工程科学 , 2018 , 20 4 : 59 ‒ 65 .
[2]
Qian F, Zhong W M, Du W L. Fundamental theories and key technologies for smart and optimal manufacturing in the process industry [J]. Engineering, 2017, 3(2): 154‒160.
[3]
贾明星 . 七十年辉煌历程 新时代砥砺前行——中国有色金属工业发展与展望 [J]. 中国有色金属学报 , 2019 , 29 9 : 1801 ‒ 1808 .
[4]
柴立元 , 王云燕 , 孙竹梅 , 等 . 绿色冶金创新发展战略研究 [J]. 中国工程科学 , 2022 , 24 2 : 10 ‒ 21 .
[5]
柴天佑 , 丁进良 . 流程工业智能优化制造 [J]. 中国工程科学 , 2018 , 20 4 : 51 ‒ 58 .
[6]
邵珠峰 , 赵云 , 王晨 , 等 . 新时期我国工业软件产业发展路径研究 [J]. 中国工程科学 , 2022 , 24 2 : 86 ‒ 95 .
[7]
边缘计算产业联盟 , 工业互联网产业联盟 . 边缘计算与云计算协同白皮书2018年 [R]. 北京 : 边缘计算产业联盟, 工业互联网产业联盟 , 2018 .
[8]
新华网 . 两院院士大会中国科协第十次全国代表大会在京召开 习近平发表重要讲话 [EBOL]. 2021-05-28 ‍[ 2022-06-10 ]. http:www.xinhuanet.compoliticsleaders2021-0528c_1127504936. htm .
[9]
桂卫华 , 曾朝晖 , 陈晓方 , 等 . 知识驱动的流程工业智能制造 [J]. 中国科学: 信息科学 , 2020 , 50 9 : 1345 ‒ 1360 .
[10]
Botha S, Le Roux J D, Craig I K. Hybrid non-linear model predictive control of a run-of-mine ore grinding mill circuit [J]. Minerals Engineering, 2018, 123: 49‒62.
[11]
刘美丽 , 唐朝晖 , 王晓丽 , 等 . 基于多信息融合与可拓理论的锑浮选工况识别方法 [J]. 中南大学学报自然科学版 , 2015 , 46 12 : 4512 ‒ 4519 .
[12]
桂卫华 , 阳春华 , 陈晓方 , 等 . 有色冶金过程建模与优化的若干问题及挑战 [J]. 自动化学报 , 2013 , 39 3 : 197 ‒ 207 .
[13]
Huang K K, Tao S J, Liu Y S, et al. Label propagation dictionary learning based process monitoring method for industrial process with between-mode similarity [J]. Science China Information Sciences, 2022, 65(1): 1‒17.
[14]
阳春华 , 韩洁 , 周晓君 , 等 . 有色冶金过程不确定优化方法探讨 [J]. 控制与决策 , 2018 , 33 5 : 856 ‒ 865 .
[15]
张健 . 基于动力学控制的钛加工材料成型优化技术 [J]. 世界有色金属 , 2015 10 : 66 ‒ 67 .
[16]
王立平 , 张超 , 蔡恩磊 , 等 . 面向自主工业软件的知识提取和知识库构建方法 [J]. 清华大学学报自然科学版 , 2022 , 62 5 : 978 ‒ 986 .
[17]
陶永 , 蒋昕昊 , 刘默 , 等 . 智能制造和工业互联网融合发展初探 [J]. 中国工程科学 , 2020 , 22 4 : 24 ‒ 33 .
[18]
中华人民共和国国务院 . 关于深化"互联网+先进制造业"发展工业互联网的指导意见 [EBOL]. 2017-11-27 ‍[ 2022-06-10 ]. http:www.gov.cnxinwen2017-1127content_5242603.htm .
[19]
工业互联网产业联盟 . 工业互联网体系架构白皮书 [R]. 北京 : 工业互联网产业联盟 , 2020 .
[20]
Sun B, Dai J T, Huang K K, et al. Smart manufacturing of nonferrous metallurgical processes: Review and perspectives [J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4): 611‒625.
[21]
Woo M. The rise of no/low code software development: No experience needed? [J]. Engineering, 2020, 6(9): 960‒961.
[22]
Yang C H, Sun B. Modeling, optimization, and control of zinc hydrometallurgical purification process [M]. Salt Lake City: American Academic Press, 2021.
[23]
王晨 , 宋亮 , 李少昆 . 工业互联网平台: 发展趋势与挑战 [J]. 中国工程科学 , 2018 , 20 2 : 15 ‒ 19 .
[24]
Haji W H. Web-based service optimization with JSON-RPC platform in Java and PHP [C]. Lampung: International Conference on Engineering and Technology Development (ICETD), 2012.
[25]
Huang X W, Hsieh C Y, Wu C H, et al. A token-based user authentication mechanism for data exchange in RESTful API [C]. Taipei: The 18th International Conference on Network-Based Information Systems, 2015.
[26]
Pechter R. What´s PMML and what´s new in PMML 4.0? [J]. ACM SIGKDD Explorations Newsletter, 2009, 11(1): 19‒25.
[27]
Zhong W M, Li C Y, Peng X, et al. A knowledge base system for operation optimization: Design and implementation practice for the polyethylene process [J]. Engineering, 2019, 5(6): 1041‒1048.
[28]
Miller J J. Graph database applications and concepts with Neo4j [C]. Atlanta: Proceedings of the Southern Association for Information Systems Conference, 2013.
[29]
Liang H P, Yang C H, Huang K K, et al. A hybrid first principles and data-driven process monitoring method for zinc smelting roasting process [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1‒14.
[30]
Liu Y S, Yang C H, Huang K K, et al. Non-ferrous metals price forecasting based on variational mode decomposition and LSTM network [J]. Knowledge-Based Systems, 2020, 188: 1‒15.
基金
中国工程院咨询项目“流程制造工业软件发展战略研究”(2021-XZ-28);国家自然科学基金项目(61988101)
PDF(38242 KB)

Accesses

Citation

Detail

段落导航
相关文章

/