
量子密码协议研究现状与未来发展
Current Status and Future Development of Quantum Cryptographic Protocols
量子计算具有并行计算能力,在解决某些特定问题上展现出超越经典计算的能力;一旦大型量子计算机研制成功,基 于计算复杂性假设的经典密码算法和协议,其安全性将受到严重挑战。量子密码是一种新型密码体制,相应安全性基于量子 力学原理,因能对抗量子计算的攻击而受到广泛关注。本文聚焦量子密码近40年的发展历程,梳理了量子密钥分配、量子 安全直接通信、量子秘密共享、量子身份认证、量子两方安全计算、量子保密查询等量子密码协议的研究进展和发展趋势, 凝练发展过程中面临的技术与应用问题。分析表明,当前量子密码协议研究处于“量子密钥分配协议遥遥领先、其他协议有 待突破”的不平衡状态,也是“其他协议难以突破”的瓶颈状态。着眼未来应用,针对数字签名、两方安全计算问题的实用 化量子协议是亟需解决的核心问题。为此建议,量子密码与后量子密码研究应同步开展,加强“量子科技”“密码学”学科 的交叉研究和人才培养,优化对相关基础研究的考核评价机制。
Quantum computing has the capability of parallel computing and is superior to classical computing in solving some specific problems. Once a large-scale quantum computer is developed, the security of classical cryptographic algorithms and protocols, which is based on the assumption of computational complexity, will be severely challenged. Quantum cryptography is a new cryptosystem; its security is based on the principles of quantum mechanics, and can resist the attack of quantum computing. This paper focuses on the nearly 40 years development of quantum cryptographic protocols, including quantum key distribution (QKD), quantum secure direct communication, quantum secret sharing, quantum identity authentication, two-party secure computation, and quantum private query, and summarizes the problems in the process of development. The analysis shows that the quantum cryptographic protocols are in an unbalanced state: QKD is far ahead of other protocols and other protocols are difficult to achieve breakthroughs. In the future, practical quantum protocols for digital signature and two-party secure computation are core issues that needs to be addressed urgently. Therefore, research on quantum and post-quantum cryptography should be conducted synchronously, cross-over study and talent cultivation for the quantum science and cryptography disciplines should be strengthened, and the examination and evaluation mechanism of relevant basic research needs to be optimized.
量子密码 / 协议 / 量子密钥分配 / 量子数字签名 / 量子保密查询
quantum cryptography / protocols / quantum key distribution / quantum digital signature / quantum private query
[1] |
Bennett C H, Brassard G. WITHDRAWN: Quantum cryptography: Public key distribution and coin tossing [C]. New York: Proceedings of the IEEE International Conference on Computers Systems and Signal Processing, 1984.
|
[2] |
Christandl M, Ferrara R, Horodecki K. Upper bounds on device-independent quantum key distribution [J]. Physical Review Letters, 2021, 126(16): 1‒6.
|
[3] |
Schwonnek R, Goh K T, Primaatmaja I W, et al. Device-independent quantum key distribution with random key basis [J]. Nature Communications, 2021, 12(1): 2880.
|
[4] |
Woodward R I, Lo Y S, Pittaluga M, et al. Gigahertz measurement-device-independent quantum key distribution using directly modulated lasers [J]. npj Quantum Information, 2021, 7: 58.
|
[5] |
Zeng P, Zhou H Y, Wu W J, et al. Quantum key distribution surpassing the repeaterless rate-transmittance bound without global phase locking [EB/OL]. (2022-01-22)[2022-05-10]. https: //arxiv.org/abs/2201.04300.
|
[6] |
Chen Y A, Zhang Q, Chen T Y, et al. An integrated space-to-ground quantum communication network over 4600 kilometres [J]. Nature, 2021, 589: 214‒219.
|
[7] |
Feng Z, Li S B, Xu Z Y. Experimental underwater quantum key distribution [J]. Optics Express, 2021, 29(6): 8725‒8736.
|
[8] |
Wang S, Yin Z Q, He D Y, et al. Twin-field quantum key distribution over 830 km fiber [J]. Nature Photonics, 2022, 16: 154‒161.
|
[9] |
Liu X, Hu J, Li Z F, et al. Heralded entanglement distribution between two absorptive quantum memories [J]. Nature, 2021, 594: 41‒45.
|
[10] |
Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme [J]. Physical Review A, 2002, 65(3): 1‒10.
|
[11] |
Deng F G, Long G L. Secure direct communication with a quantum one-time pad [J]. Physical Review A, 2004, 69(5): 1‒10.
|
[12] |
Long G L, Deng F G, Wang C, et al. Quantum secure direct communication and deterministic secure quantum communication [J]. Frontiers of Physics in China, 2007, 2(3): 251‒272.
|
[13] |
Hu J Y, Yu B, Jing M Y, et al. Experimental quantum secure direct communication with single photons [J]. Light-Science & Applications, 2016, 5: 1‒10.
|
[14] |
Qi Z T, Li Y H, Huang Y W, et al. A 15-user quantum secure direct communication network [J]. Light-Science & Applications, 2021, 10(1): 183.
|
[15] |
Hillery M, Bužek V, Berthiaume A. Quantum secret sharing [J]. Physical Review A, 1999, 59(3): 1829.
|
[16] |
Chou Y H, Zeng G J, Chen X Y, et al. Multiparty weighted threshold quantum secret sharing based on the Chinese remainder theorem to share quantum information [J]. Scientific Reports, 2021, 11: 1‒10.
|
[17] |
Bell B, Markham D, Herrera-Martí D, et al. Experimental demonstration of graph-state quantum secret sharing [J]. Nature Communications, 2014, 5(1): 1‒12.
|
[18] |
Zhou Y, Yu J, Yan Z, et al. Quantum secret sharing among four players using multipartite bound entanglement of an optical field [J]. Physical Review Letters, 2018, 121(15): 1‒6.
|
[19] |
Liao Q, Liu H, Zhu L, et al. Quantum secret sharing using discretely modulated coherent states [J]. Physical Review A, 2021, 103(3): 1‒10.
|
[20] |
Dušek M, Haderka O, Hendrych M, et al. Quantum identification system [J]. Physical Review A, 1999, 60(1): 149.
|
[21] |
Gottesman D, Chuang I L. Quantum digital signatures [EB/OL]. (2001-05-08)[2022-05-01]. https: //arxiv.org/abs/quant-ph/0105032.
|
[22] |
Barnum H, Crépeau C, Gottesman D, et al. Authentication of quantum messages [C]. Vancouver: The 43th Annual IEEE Symposium on Foundations of Computer Science, 2002.
|
[23] |
Puthoor I V, Amiri R, Wallden P, et al. Measurement-device-independent quantum digital signatures [J]. Physical Review A, 2016, 94(2): 1‒10.
|
[24] |
Thornton M, Scott H, Croal C, et al. Continuous-variable quantum digital signatures over insecure channels [J]. Physical Review A, 2019, 99(3): 1‒10.
|
[25] |
Zhao W, Shi R, Ruan X. High-efficiency continuous-variable quantum digital signature protocol for signing multi-bit messages [J]. Laser Physics Letters, 2021, 18(3): 1‒6.
|
[26] |
Qiu L, Cai F, Xu G. Quantum digital signature for the access control of sensitive data in the big data era [J]. Future Generation Computer Systems-The International Journal of eScience, 2018, 86: 372‒379.
|
[27] |
Singh S, Rajput N K, Rathi V K, et al. Securing blockchain transactions using quantum teleportation and quantum digital signature [J]. Neural Processing Letters, 2020, 52: 1‒10.
|
[28] |
Lo H K, Chau H F. Is Quantum bit commitment really possible? [J]. Physical Review Letters, 1997, 78(17): 3410‒3413.
|
[29] |
Mayers D. Unconditionally secure quantum bit commitment is impossible [J]. Physical Review Letters, 1997, 78(17): 3414‒3417.
|
[30] |
Ng N, Joshi S, Ming C, et al. Experimental implementation of bit commitment in the noisy-storage model [J]. Nature Communications, 2012, 3: 1326.
|
[31] |
Lunghi T, Kaniewski J, Bussières F, et al. Experimental bit commitment based on quantum communication and special relativity [J]. Physical Review Letters, 2013, 111: 1‒10
|
[32] |
Liu Y, Cao Y, Curty M, et al. Experimental unconditionally secure bit commitment [J]. Physical Review Letters, 2014, 112: 1‒10.
|
[33] |
Mochon C. Quantum weak coin flipping with arbitrarily small bias [EB/OL]. (2007-11-26)[2022-05-01]. https: //arxiv.org/abs/07711.4114.
|
[34] |
Berlín G, Brassard G, Bussières F, et al. Fair loss-tolerant quantum coin flipping [J]. Physical Review A, 2009, 80(6): 1‒10.
|
[35] |
Chailloux A. Improved loss-tolerant quantum coin flipping [EB/OL]. (2022-01-22)[2022-05-10]. https: //arxiv.org/abs/1009.0044.
|
[36] |
Chailloux A, Kerenidis I. Optimal quantum strong coin flipping [C]. Atlanta: 2009 50th Annual IEEE Symposium on Foundations of Computer Science, 2010.
|
[37] |
Bozzio M, Chabaud U, Kerenidis I, et al. Quantum weak coin flipping with a single photon [J]. Physical Review A, 2020, 102(2): 1‒10.
|
[38] |
Pappa A, Jouguet P, Lawson T, et al. Experimental plug and play quantum coin flipping [J]. Nature Communications, 2014, 5: 3717.
|
[39] |
Crépeau C, Kilian J. Achieving oblivious transfer using weakened security assumptions [C]. White Plains: 29th Annual Symposium on Foundations of Computer Science, 1988.
|
[40] |
Shimizu K, Imoto N. Communication channels analogous to one out of two oblivious transfers based on quantum uncertainty [J]. Physical Review A, 2002, 66(5): 1‒10.
|
[41] |
Damgard I B, Fehr S, Salvail L, et al. Cryptography in the bounded quantum-storage model [C]. Pittsburgh: 46th Annual IEEE Symposium on Foundations of Computer Science, 2005.
|
[42] |
Pitalúa-García D. Spacetime-constrained oblivious transfer [J]. Physical Review A, 2016, 93(6): 1‒10.
|
[43] |
Chailloux A, Gutoski G, Sikora J. Optimal bounds for semi-honest quantum oblivious transfer [J]. Chicago Journal of Theoretical Computer Science, 2016: 1‒16.
|
[44] |
Amiri R, Stárek R, Reichmuth D, et al. Imperfect 1-out-of-2 quantum oblivious transfer: Bounds, a protocol, and its experimental implementation [J]. PRX Quantum, 2021, 2(1): 1‒10.
|
[45] |
Gao F, Qin S, Huang W, et al. Quantum private query: A new kind of practical quantum cryptographic protocol [J]. Science China Physics, Mechanics & Astronomy, 2019, 62(7): 1‒10.
|
[46] |
Giovannetti V, Lloyd S, Maccone L. Quantum private queries [J]. Physical Review Letters, 2008, 100(23): 1‒10.
|
[47] |
Scarani V, Acin A, Ribordy G, et al. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations [J]. Physical Review Letters, 2004, 92(5): 1‒10.
|
[48] |
Jakobi M, Simon C, Gisin N, et al. Practical private database queries based on a quantum-key-distribution protocol [J]. Physical Review A, 2011, 83(2): 1‒10.
|
[49] |
Liu B, Gao F, Huang W, et al. QKD-based quantum private query without a failure probability [J]. Science China-Physics Mechanics & Astronomy, 2015, 58(10): 1‒10.
|
[50] |
Wei C, Cai X, Liu B, et al. A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure [J]. IEEE Transactions on Computers, 2018, 67(1): 2‒8.
|
[51] |
Gao F, Liu B, Huang W, et al. Postprocessing of the oblivious key in quantum private query [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(3): 98‒108.
|
[52] |
Chan P, Lucio-Martinez I, Mo X, et al. Performing private database queries in a real-world environment using a quantum protocol [J]. Scientific Reports, 2014, 4: 5233.
|
[53] |
Li N, Li J, Chen X B, et al. Quantum wireless network private query with multiple third parties [J]. IEEE Access, 2019, 7: 33964‒33969.
|
[54] |
Wei C, Cai X, Wang T, et al. Error tolerance bound in qkd-based quantum private query [J]. IEEE Journal on Selected Areas in Communications, 2020, 38(3): 517‒527.
|
/
〈 |
|
〉 |