量子计算研究现状与未来发展

李晓巍, 付祥, 燕飞, 钟有鹏, 陆朝阳, 张君华, 贺煜, 尉石, 鲁大为, 辛涛, 陈济雷, 林本川, 张振生, 刘松, 陈远珍, 俞大鹏

中国工程科学 ›› 2022, Vol. 24 ›› Issue (4) : 133-144.

PDF(997 KB)
PDF(997 KB)
中国工程科学 ›› 2022, Vol. 24 ›› Issue (4) : 133-144. DOI: 10.15302/J-SSCAE-2022.04.016
量子信息技术工程化应用发展战略研究
Orginal Article

量子计算研究现状与未来发展

作者信息 +

Current Status and Future Development of Quantum Computation

Author information +
History +

摘要

量子计算乃至更为广泛的量子信息,是基于量子力学原理发展出来的概念与技术体系,涉及信息的本质及其处理。量子计算利用量子叠加、量子纠缠等资源进行信息编码和处理,已被证明在若干问题上具有相对于经典计算的极大优势,在实用化后将对信息及相关科技产生深远影响。本文概要回顾了量子计算的发展历史,如量子计算思想与概念的形成、重要理论及算法的发展以及应用情况;梳理总结了代表性的量子计算技术路线及其发展态势,如超导量子计算、分布式超导量子计算、光量子计算、囚禁离子量子计算、硅基量子计算及若干其他体系。着眼不同技术路线面临的共性问题,对我国量子计算领域未来发展提出建议:注重战略规划和布局,培养高水平研究团队,加强基础研究、核心技术、关键设备的自主研发。

Abstract

Quantum computation, as part of the broader field of quantum information, represents an assembly of concepts and techniques that concern the nature and processing of information based on quantum mechanics. Quantum computation utilizes unique resources such as quantum superposition and quantum entanglement to encode and process information and has been proved to be dominantly advantageous over classical computation on certain important scientific and engineering problems. Potential applications of quantum computation are expected to influence future information technology and many other related fields deeply and significantly. In this article, we briefly review the history of quantum computation, including how its fundamental ideas and concepts came into being and the development of its significant theories and algorithms. We also discuss the status and outlook of several representative technical routes in this field, including superconducting quantum computation, distributed superconducting quantum computation, photonic quantum computation, trapped-ion quantum computation, silicon-based quantum computation, as well as other systems. Furthermore, by analyzing certain common issues faced by all routes, we propose some thoughts and suggestions for future development of quantum computation in China. We particularly emphasize the following: reinforcement of strategic planning at a national level, establishment of a research team of high caliber, and boost of relevant fundamental research and development of core techniques and critical instruments.

关键词

量子计算 / 量子算法 / 量子测控系统 / 量子软件 / 超导量子计算 / 分布式量子计算 / 囚禁离子量子计算 / 硅基量子计算 / 光量子计算 / 中性原子量子计算 / 金刚石氮空位色心 / 核磁共振量子计算 / 自旋波量子计算 / 拓扑量子计算

Keywords

quantum computation / quantum algorithm / control system of quantum computation / quantum software / superconducting quantum computation / distributed quantum computation / trapped-ion quantum computation / silicon-based quantum computation / photonic quantum computation / neutral atom quantum computation / nitrogen-vacancy color center in diamond / nuclear magnetic resonance quantum computation / quantum computation with spin wave / topological quantum computation

引用本文

导出引用
李晓巍, 付祥, 燕飞. 量子计算研究现状与未来发展. 中国工程科学. 2022, 24(4): 133-144 https://doi.org/10.15302/J-SSCAE-2022.04.016

参考文献

[1]
Preskill J. Quantum computing 40 years later [EB/OL]. (2021-06-19)[2022-05-15]. https: //arxiv.org/abs/2106.10522.
[2]
Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring [C]. Santa Fe: Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994.
[3]
Preskill J. Quantum computing in the NISQ era and beyond [J]. Quantum, 2018, 2: 79.
[4]
Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer [J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1985, 400(1818): 97‒117.
[5]
Deutsch D. Quantum computational networks [J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1989, 425(1868): 73‒90.
[6]
Yao A C C. Quantum circuit complexity [C]. Palo Alto: Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science, 1993.
[7]
Bernstein E, Vazirani U. Quantum complexity theory [J]. SIAM Journal on Computing, 1993, 26(5): 11‒20.
[8]
Grover L K. A fast quantum mechanical algorithm for database search [C]. Philadelphia: Proceedings of the 28th annual ACM Symposium on Theory of Computing, 1996.
[9]
Lloyd S. Universal quantum simulators [J]. Science, 1996, 273(5278): 1073‒1078.
[10]
Harrow A W, Hassidim A, Lloyd S. Quantum algorithm for linear systems of equations [J]. Physical Review Letters, 2009, 103: 1‒5.
[11]
Panella M, Martinelli G. Neural networks with quantum architecture and quantum learning [J]. International Journal of Circuit Theory and Applications, 2011, 39(1): 61‒77.
[12]
Huang H Y, Broughton M, Cotler J, et al. Quantum advantage in learning from experiments [J]. Science, 2022, 376(6598): 1182‒1186.
[13]
Peruzzo A, McClean, J, Shadbolt P, et al. A variational eigenvalue solver on a photonic quantum processor [J]. Nature Communications, 2014, 5: 1‒7.
[14]
Farhi E, Goldstone J, Gutmann S. A quantum approximate optimization algorithm [EB/OL]. (2014-11-14)[2022-05-15]. https://arxiv.org/abs/1411.4028.
[15]
Ying M S. Foundations of quantum programming [M]. San Mateo: Morgan Kaufmann Publishers Inc., 2016.
[16]
Fu X, Yu J T, Su X, et al. Quingo: A programming framework for heterogeneous quantum-classical computing with NISQ features [J]. ACM Transactions on Quantum Computing, 2021, 2(4): 1‒37.
[17]
Guo J Z, Lou H Z, Li R L, et al. isQ: Towards a practical software stack for quantum programming [EB/OL] (2022-05-08)[2022-05-15]. https: //arxiv.org/abs/2205.03866.
[18]
Fu X, Rol M A, Bultink C C, et al. An experimental microarchitecture for a superconducting quantum processor [C]. Boston: 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture, 2017.
[19]
Zhang M Y, Xie L, Zhang Z X, et al. Exploiting different levels of parallelism in the quantum control microarchitecture for superconducting oubit [C]. Chicago: 54th Annual IEEE/ACM International Symposium on Microarchitecture, 2021.
[20]
Kwon S, Tomonaga A, Bhai G L, et al. Tutorial: Gate-based superconducting quantum computing [J]. Journal of Applied Physics, 2021, 129: 1‒12.
[21]
Yan F, Krantz P, Sung Y K, et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates [J]. Physical Review Applied, 2018, 10(5): 1‒15.
[22]
Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor [J]. Nature, 2019, 574: 505‒510.
[23]
Wu Y L, Bao W S, Cao S R, et al. Strong quantum computational advantage using a superconducting quantum processor [J]. Physical Review Letters, 2021, 127: 1‒15.
[24]
Place A P M, Rodgers L V H, Mundada P, et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds [J]. Nature Communications, 2021, 12: 1‒6.
[25]
Wang C L, Li X G, Xu H K, et al. Towards practical quantum computers: Transmon qubit with a lifetime approaching 0.5 milliseconds [J]. npj Quantum Information, 2022, 8: 1‒6.
[26]
Sung Y K, Ding L, Braumuller J, et al. Realization of high-fidelity cz and z z-free iSWAP gates with a tunable coupler [J]. Physical Review X, 2021, 11(2): 1‒12.
[27]
Stehlik J, Zajac D M, Underwood, D L, et al. Tunable coupling architecture for fixed-frequency transmon superconducting qubits [J]. Physical Review Letters, 2021, 127: 1‒6.
[28]
Andersen C K, Remm A, Lazar S, et al. Repeated quantum error detection in a surface code [J]. Nature Physics, 2020, 16: 875‒880.
[29]
Krinner S, Lacroix N, Remm A, et al. Realizing repeated quantum error correction in a distance-three surface code [J]. Nature, 2022, 605: 669‒674.
[30]
Zhong Y P, Chang H S, Satzinger K J, et al. Violating Bell´s inequality with remotely connected superconducting qubits [J]. Nature Physics, 2019, 15: 741‒744.
[31]
Kurpiers P, Magnard P, Walter T, et al. Deterministic quantum state transfer and remote entanglement using microwave photons [J]. Nature, 2018, 558: 264‒267.
[32]
Magnard P, Storz S, Kurpiers P, et al. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems [J]. Physical Review Letters, 2020, 125: 1‒6.
[33]
Zhong Y P, Chang H S, Bienfait A, et al. Deterministic multi-qubit entanglement in a quantum network [J]. Nature, 2021, 590: 571‒575.
[34]
He Y M, He Y, Wei Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability [J]. Nature Nanotechnology, 2013, 8: 213‒217.
[35]
Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics [J]. Nature, 2001, 409: 46‒52.
[36]
Pelucchi E, Fagas G, Aharonovich I, et al. The potential and global outlook of integrated photonics for quantum technologies [J]. Nature Reviews Physics, 2022, 4: 194‒208.
[37]
Zhong H S, Wang H, Deng Y H, et al. Quantum computational advantage using photons [J]. Science, 2020, 370(6523): 1460‒1463.
[38]
Zhong H S, Deng Y H, Qin J, et al. Phase-programmable gaussian boson sampling using stimulated squeezed light [J]. Physical Review Letters, 2021, 127: 1‒14.
[39]
Madsen L S, Laudenbach F, Askarani, M F, et al. Quantum computational advantage with a programmable photonic processor [J]. Nature, 2022, 606: 75‒81.
[40]
Cirac J I, Zoller P. Quantum computations with cold trapped ions [J]. Physical Review Letters, 1995, 74: 4091‒4094.
[41]
Linke N M, Maslov D, Roetteler M, et al. Experimental comparison of two quantum computing architectures [J] Proceedings of the National Academy of Sciences, 2017, 114(13): 3305‒3310.
[42]
Wang P F, Luan C Y, Qiao M, et al. Single ion qubit with estimated coherence time exceeding one hour [J]. Nature Communication, 2021, 12: 1‒5.
[43]
Gaebler J P, Tan T R, Lin Y, et al. High-fidelity universal gate set for 9Be+ ion qubits [J]. Physical Review Letters, 2016, 117: 1‒5.
[44]
Kielpinski D, Monroe C, Wineland D J, et al. Architecture for a large-scale ion-trap quantum computer [J]. Nature, 2002, 417: 709‒711.
[45]
Zwanenburg F A, Dzurak A S, Morello A, et al. Silicon quantum electronics [J]. Reviews of Modern Physics, 2013, 85(3): 961.
[46]
Veldhorst M, Eenink H G J, Yang C H, et al. Silicon CMOS architecture for a spin-based quantum computer [J]. Nature Communications, 2017, 8: 1‒5.
[47]
Huang W, Yang C H, Chan K W, et al. Fidelity benchmarks for two-qubit gates in silicon [J]. Nature, 2019, 569: 532‒536.
[48]
Watson T F, Philips S G J, Kawakami E, et al. A programmable two-qubit quantum processor in silicon [J]. Nature, 2018, 555: 633‒637.
[49]
He Y, Gorman S K, Kranz D, et al. A two-qubit gate between phosphorus donor electrons in silicon [J]. Nature, 2019, 571: 371‒375.
[50]
Philips S G J, Mądzik M T, Amitonov S V, et al. Universal control of a six-qubit quantum processor in silicon [EB/OL]. (2022-02-18)[2022-05-15]. https: //arxiv.org/abs/2202.09252.
[51]
Yang C H, Leon R C C, Hwang J C C, et al. Operation of a silicon quantum processor unit cell above one kelvin [J]. Nature, 2020, 580: 350‒354.
[52]
Petit L, Eenink H G J, Russ M, et al. Universal quantum logic in hot silicon qubits [J]. Nature, 2020, 580: 355‒359.
[53]
Xue X, Patra B, Dijk J P G, et al. CMOS-based cryogenic control of silicon quantum circuits [J]. Nature, 2021, 593: 205‒210.
[54]
Browaeys A, Lahaye T. Many-body physics with individually controlled Rydberg atoms [J]. Nature Physics, 2020, 16: 132‒142.
[55]
Kaufman A M, Ni K K. Quantum science with optical tweezer arrays of ultracold atoms and molecules [J]. Nature Physics, 2021, 17: 1324‒1333.
[56]
Wehner S, Elkouss D, Hanson R. Quantum Internet: A vision for the road ahead [J]. Science, 2018, 362(6412): 1‒5.
[57]
Wu Y, Liu W Q, Geng J P, et al. Observation of parity-time symmetry breaking in a single-spin system [J]. Science, 2019, 364(6443): 878‒880.
[58]
Vandersypen L M K, Chuang I L. NMR techniques for quantum control and computation [J]. Reviews of Modern Physics, 2005, 76(4): 1037‒1040.
[59]
Li J, Luo Z H, Xin T, et al. Experimental implementation of efficient quantum pseudorandomness on a 12-spin system [J]. Physical Review Letters, 2019, 123(3): 1‒5.
[60]
Yuan H Y, Cao Y S, Kamra A, et al. Quantum magnonics: When magnon spintronics meets quantum information science [J]. Physics Reports, 2022, 965, 1‒74.
[61]
Lachance-Quirion D, Wolski S P, Tabuchi Y, et al. Entanglement-based single-shot detection of a single magnon with a superconducting qubit [J]. Science, 2020, 367(6476): 425‒428.
[62]
Nayak C, Simon S H, Stern A, et al. Non-Abelian anyons and topological quantum computation [J]. Reviews of Modern Physics, 2008, 80: 1083‒1086.
基金
中国工程院咨询项目“量子信息技术工程化应用发展战略研究”(2021-HYZD-01)
PDF(997 KB)

Accesses

Citation

Detail

段落导航
相关文章

/