
量子地球物理深部探测技术及装备发展战略研究
Development Strategy of Quantum-Based Deep Geophysical Exploration Technology and Equipment
量子传感与测量技术是实现地球深部重磁场精细化探测的颠覆性技术之一,成为国际地球物理探测装备的重点发展方 向。本文聚焦我国地球重磁场的量子高精度测量前沿技术布局,梳理了量子地球物理探测装备的发展现状,分析了深部资源 探测中超导量子电磁探测系统、磁矢量梯度探测系统和超导重力探测系统、冷原子绝对重力探测系统等需求,研判量子精密 测量技术的国际发展态势,剖析我国该领域发展面临的科技难题、技术瓶颈和机遇挑战。针对我国量子地球物理探测装备在 核心技术攻关、完全国产化和探测应用等方面能力不足问题,提出了新一代量子高精度地球物理深部探测装备的发展目标、 技术体系、重点任务、战略规划,突破超导量子芯片和高灵敏度传感器等“卡脖子”技术瓶颈,建立我国自主可控的量子地 球物理探测技术及装备发展的协同组织模式,推动深部探测装备高质量跨越式发展,为解决深部矿产资源探测、揭示地球深 部构造等重大问题提供技术支撑。
Quantum-based sensing and measurement technology is a disruptive technology that can realize fine detection of the gravity and magnetic fields in deep Earth, and it has become a key development direction for geophysical exploration equipment worldwide. This study focuses on the frontier technologies for the quantum-based high-precision measurement of Earth’s gravity and magnetic fields, summarizes the development status of quantum-based geophysical exploration equipment, and analyzes demand for the superconducting quantum-based electromagnetic detection system, magnetic vector gradient detection system, superconducting gravity detection system, and cold-atom absolute-gravity exploration system during deep resource exploration. Moreover, the international trend of quantum-based high-precision measurement technology as well as the development opportunities and challenges in this field are analyzed. To improve the core technology research, complete localization, and exploration application of quantumbased geophysical exploration equipment in China, we propose the development goals, technical system, key tasks, and strategic planning for a new generation of quantum-based high-precision deep geophysical exploration equipment. This aims to achieve breakthroughs in superconducting quantum chips and high-sensitivity sensors, establish a collaboration model for the independent development of China’s quantum-based geophysical exploration equipment, promote the high-quality development of deep exploration equipment, and provide strategic support for solving major problems associated with deep mineral resource exploration and revealing of Earth’s deep structure.
矿产资源 / 深部探测 / 量子高精度测量 / 超导量子电磁探测 / 超导重力探测 / 冷原子绝对重力探测
mineral resources / deep detection / quantum-based high-precision measurement / superconducting quantum-based electromagnetic detection / superconducting gravity detection / cold-atom absolute-gravity detection
[1] |
鞠建华 , 王嫱 , 陈甲斌 . 新时代中国矿业高质量发展研究 [J]. 中国矿业 , 2019 , 28 1 : 1 ‒ 7 .
|
[2] |
吴初国 , 汤文豪 , 张雅丽 , 等 . 新时代我国矿产资源安全的总体态势 [J]. 中国矿业 , 2021 , 30 6 : 9 ‒ 15 .
|
[3] |
郭娟 , 崔荣国 , 闫卫东 , 等 . 2020年中国矿产资源形势回顾与展望 [J]. 中国矿业 , 2021 , 30 1 : 5 ‒ 10, 54 .
|
[4] |
蒿巧利 , 赵晏强 , 李印结 . 全球量子传感发展态势分析 [J]. 世界科技研究与发展 , 2022 , 44 1 : 59 ‒ 68 .
|
[5] |
Battersby S. Quantum sensors probe uncharted territories, from Earth´s crust to the human brain [J]. Proceedings of the National Academy of Sciences, 2019, 116(34): 16663‒16665.
|
[6] |
Jensen K, Skarsfeldt M A, Stsrkind H, et al. Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer [J]. Scientific Reports, 2018, 8(1): 1‒10.
|
[7] |
田倩飞 . 美国公布《推动量子信息科学: 国家挑战与机遇》 [J]. 科研信息化技术与应用 , 2016 , 7 5 : 95 ‒ 96 .
|
[8] |
Kim B, Lee S, Park G, et al. Development of an unmanned airship for magnetic exploration [J]. Exploration Geophysics(Melbourne), 2021, 52 (4): 462‒467.
|
[9] |
Chen L, Wu P, Zhu W, et al. A novel strategy for improving the aeromagnetic compensation performance of helicopters [J]. Sensors, 2018, 18(6): 1846.
|
[10] |
Schmidt P, Clark D, Leslie K, et al. GETMAG-a SQUID magnetic tensor gradiometer for mineral and oil exploration [J]. Exploration Geophysics, 2004, 35(4): 297‒305.
|
[11] |
Stolz R, Schmelz M, Zakosarenko V, et al. Superconducting sensors and methods in geophysical applications [J]. Superconductor Science and Technology, 2021, 34(3): 1‒10.
|
[12] |
Macfarlane J C. Electromagnetic and metrological applications of superconductivity: An Australian historical perspective [C]. Sydney: 2011 International Conference on Applied Superconductivity and Electromagnetic Devices, IEEE, 2011.
|
[13] |
Della Corte A, Fagaly R. The IEEE awards in applied superconductivity(2016) [J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 1‒10.
|
[14] |
Motoori M, Ueda S, Masuda K, et al. A newly developed 3ch system of SQUITEM III and the result of its field test [C]. Porto: 2nd Conference on Geophysics for Mineral Exploration and Mining, 2018.
|
[15] |
Hasegawa D, Watanabe T, Ito T, et al. Seismic interferometry imaging of subsurface structure in the southernmost area of South Japanese Alps [C]. Tokyo: The 13th SEGJ International Symposium, 2018.
|
[16] |
Kirschvink J, Isozaki Y, Shiuya H, et al. Challenging the sensitivity limits of Paleomagnetism: Magnetostratigraphy of weakly magnetized Guadalupian-Lopingian(Permian) limestone from Kyushu, Japan [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 418: 75‒89.
|
[17] |
Schmelz M, Zakosarenko V, Chwala A, et al. Thin-film based ultralow noise SQUID magnetometer [J]. IEEE Transactions on Applied Superconductivity, 2016, 26(5): 1‒5.
|
[18] |
Difrancesco D. Advances and challenges in the development and deployment of gravity gradiometer systems [C]. Capri: EGM 2007 International Workshop, 2007.
|
[19] |
He S, Wu D, Miao Q. The principle of cold atom interference and its application in navigation [C]. Tianjin: 2020 International Conference on Artificial Intelligence and Electromechanical Automation, IEEE, 2020.
|
[20] |
Ménoret V, Vermeulen P, Le Moigne N, et al. Gravity measurements below 10-9 g with a transportable absolute quantum gravimeter [J]. Scientific Reports, 2018, 8(1): 1‒10.
|
[21] |
Adams B, Macrae C, Entezami M, et al. The development of a High data rate atom interferometric gravimeter(HIDRAG) for gravity map matching navigation [C]. Beijing: 2021 IEEE International Symposium on Inertial Sensors and Systems, IEEE, 2021.
|
[22] |
Bonvalot S, Bresson A, Bidel Y, et al. Airborne absolute gravimetry using cold-atom interferometry: First experiment and comparisons with classical technologies [C]. San Francisco: AGU Fall Meeting Abstracts, 2019.
|
[23] |
Stray B, Lamb A, Kaushik A, et al. Quantum sensing for gravity cartography [J]. Nature, 2022, 602: 590‒594.
|
[24] |
林君 , 刁庶 , 张洋 , 等 . 地球物理矢量场磁测技术的研究进展 [J]. 科学通报 , 2017 , 62 23 : 2606 ‒ 2618 .
|
[25] |
熊盛青 . 航空地球物理科技创新与应用 [J]. 地质力学学报 , 2020 , 26 5 : 791 ‒ 818 .
|
[26] |
熊盛青 , 周锡华 , 薛典军 , 等 . 航空地球物理综合探测理论技术方法装备应用 [M]. 北京 : 地质出版社 , 2018 .
|
[27] |
吕庆田 , 张晓培 , 汤井田 , 等 . 金属矿地球物理勘探技术与设备: 回顾与进展 [J]. 地球物理学报 , 2019 , 62 10 : 3629 ‒ 3664 .
|
[28] |
王士良 , 邱隆清 , 王永良 , 等 . 航空超导全张量磁梯度仪的串扰研究 [J]. 低温物理学报 , 2017 1 : 36 ‒ 40 .
|
[29] |
郭华 , 王明 , 岳良广 , 等 . 吊舱式高温超导全张量磁梯度测量系统研发与应用研究 [J]. 地球物理学报 , 2022 , 65 1 : 360 ‒ 370 .
|
[30] |
底青云 , 方广有 , 张一鸣 . 地面电磁探测系统SEP研究 [J]. 地球物理学报 , 2013 , 56 11 : 3629 ‒ 3639 .
|
[31] |
Tang S, Liu H, Yan S, et al. A high-sensitivity MEMS gravimeter with a large dynamic range [J]. Microsystems & Nanoengineering, 2019, 5: 45.
|
[32] |
Xie H T, Chen B, Long J B, et al. Calibration of a compact absolute atomic gravimeter [J]. Chinese Physics B, 2020, 29(9): 84‒91.
|
[33] |
Graser S, Hirschfeld P J, Kopp T, et al. How grain boundaries limit supercurrents in high-temperature superconductors [J]. Nature Physics, 2010, 6(8): 609‒614.
|
[34] |
Myoren H, Kobayashi R, Kumagai K, et al. Noise properties of digital SQUID using double relaxation oscillation SQUID comparator with relaxation oscillation resonant circuit [J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1‒5.
|
[35] |
Kaczmarek L L, IJsselsteijn R, Zakosarenko V, et al. Advanced HTS dc SQUIDs with step-edge Josephson junctions for geophysical applications [J]. IEEE Transactions on Applied Superconductivity, 2018, 28(7): 1‒5.
|
[36] |
Hato T, Tsukamoto A, Tanabe K. Portable cryostat with temperature control function for operation of HTS-SQUID at a higher slew rate [J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 1‒4.
|
[37] |
Wakana H, Adachi S, Hata K, et al. Development of integrated HTS SQUIDs with a multilayer structure and ramp-edge Josephson junctions [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 782‒785.
|
[38] |
Adachi S, Tsukamoto A, Hato T, et al. Production of HTS-SQUID magnetometer with ramp-edge junctions exhibiting lowered noise in AC biasing mode [J]. IEEE Transactions on Applied Superconductivity, 2018, 28(4): 1‒4.
|
/
〈 |
|
〉 |