
重大基础设施非核强电磁脉冲威胁与防护策略研究
吴琦, 刘元安, 闻映红, 赵明敏, 王卫民, 张金宝, 苏东林
中国工程科学 ›› 2022, Vol. 24 ›› Issue (4) : 249-258.
重大基础设施非核强电磁脉冲威胁与防护策略研究
Non-nuclear Electromagnetic Pulse Threat of Critical Infrastructures and Protection Strategies
国家现代化建设和运行高度依赖重大基础设施,相应安全问题成为国家安全的核心要素之一;非核强电磁脉冲源生成 技术逐步成熟并朝着普及化、隐蔽化方向发展,已成为重大基础设施的现实威胁类别。重大基础设施的电磁安全保障研究成 为我国面临的紧迫性、战略性任务。本文以重大基础设施的非核强电磁脉冲威胁为研究对象,明确了概念内涵并凝练了重大 需求,梳理了先发国家在本领域所发布的国家政策、产业标准、基础研究、应急管理等举措;阐述了防护关键技术体系,包 括正向设计、等效试验评估、威胁监测与预警等方面。在剖析我国重大基础设施的非核强电磁脉冲防护现状及存在问题的基 础上,提出了强化政府领导、组织科研攻关、制定标准规范、激发企业活力、分类分阶段实施防护加固、促进人才培育、加 强公众培训等方面的基本策略。相关研究可为我国非核强电磁脉冲防护领域建设与发展、提升国家应对新型安全威胁能力提 供基础参考。
Major infrastructures are vital for the modernization and operation of a country and the safety of major infrastructures is crucial for national security. In recent years, the generation technology of non-nuclear electromagnetic pulse (EMP) sources has gradually matured and develops to be universal and concealed. Therefore, the non-nuclear EMP has become a realistic threat for major infrastructures. Ensuring the electromagnetic safety of major infrastructures is an urgent strategic task for China. This study takes the non-nuclear EMP threat of major infrastructures as the research object, clarifies the basic concepts of and major demands for EMP protection for major infrastructures, and analyzes the measures taken by developed countries in this field from the aspects of national policies, industrial standards, fundamental research, and emergency management. In addition, the key technologies for efficient nonnuclear EMP protection are discussed, focusing on forward design, equivalent test and evaluation, and threat monitoring and prediction. Moreover, this study analyzes the current status and existing problems regarding non-nuclear EMP protection of major infrastructures in China and proposes several fundamental strategies including strengthening government leadership, promoting scientific research, formulating standards and guidance, stimulating the vitality of enterprises, conducting classified and staged implementation, boosting talent cultivation, and promoting public training. This study can provide a basic reference for the nonnuclear EMP protection of major infrastructures and further support China to handle new threats.
重大基础设施 / 强电磁脉冲 / 分级防护 / 应急响应 / 电磁防护
critical infrastructure / electromagnetic pulse / graded protection / emergency response / electromagnetic protection
[1] |
Foster J S, Gjelde E, Graham W R, et al. Report of the commission to assess the threat to the United States from electromagnetic pulse(EMP) attack: Critical national infrastructures [R]. Mclean: Electromagnetic Pulse Commission, 2008.
|
[2] |
Ostrich J, Kumar P. DOE electromagnetic pulse resilience action plan [EB/OL]. (2017-01-06)[2022-06-01]. https: //www.energy.gov/oe/downloads/doe-electromagnetic-pulse-resilience-action-plan.
|
[3] |
Wang D W, Li Y F, Dehghanian P, et al. Power grid resilience to electromagnetic pulse(EMP) disturbances: A literature review [C]. Wichita: 2019 North American Power Symposium, 2019.
|
[4] |
邱爱慈 , 别朝红 , 李更丰 , 等 . 强电磁脉冲威胁与弹性电力系统发展战略 [J]. 现代应用物理 , 2021 , 12 3 : 1 ‒ 10 .
|
[5] |
Sun K. Complex networks theory: A new method of research in power grid [C]. Dalian: 2005 IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific, 2005.
|
[6] |
Xu W T, Zhou J P, Qiu G. China´s high-speed rail network construction and planning over time: A network analysis [J]. Journal of Transport Geography, 2018, 70: 40‒54.
|
[7] |
Wang L, An M, Jia L, et al. Application of complex network principles to key station identification in railway network efficiency analysis [J]. Journal of Advanced Transportation, 2019 (7291): 1‒13.
|
[8] |
Li K J, Xie Y Z, Zhang F, et al. Statistical inference of serial communication errors caused by repetitive electromagnetic disturbances [J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(4): 1160‒1168.
|
[9] |
王意 , 邹艳丽 , 黄李 , 等 . 综合考虑局部和全局特性的电网关键节点识别 [J]. 计算物理 , 2018 , 35 1 : 119 ‒ 126 .
|
[10] |
叶玉玲 , 李文卿 , 张俊 . 高速铁路网络复杂特性及其传播动力学研究 [J]. 同济大学学报自然科学版 , 2019 , 47 5 : 655 ‒ 662 .
|
[11] |
Guo Y F, Zhang D R, Li Z C, et al. Overviews on the applications of the Kuramoto model in modern power system analysis [J]. International Journal of Electrical Power & Energy System, 2021, 129: 1‒15.
|
[12] |
Liu Q F, Ni C, Zhang H Q, et al. Lumped-network FDTD method for simulating transient responses of RF amplifiers excited by IEMI signals [J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(5): 1512‒1521.
|
[13] |
Lanzrath M, Suhrke M, Hirsch H. HPEM-based risk assessment of substations enabled for the smart grid [J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(1): 173‒185.
|
[14] |
Zhou L, San Z W, Hua Y J, et al. Investigation on failure mechanisms of GaN HEMT caused by high-power microwave(HPM) pulses [J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(3): 902‒909.
|
[15] |
Zhang J H, Lin M T, Wu Z F, et al. Energy selective surface with power-dependent transmission coefficient for high-power microwave protection in waveguide [J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2494‒2502.
|
[16] |
Xiao M, Ma Y W, Liu K, et al. 10 kV, 39 mΩ·cm2 multi-channel AlGaN/GaN schottky barrier diodes [J]. IEEE Electron Device Letters, 2021, 42(6): 808‒811.
|
[17] |
Wen Y H, Hou W X. Research on electromagnetic compatibility of Chinese high speed railway system [J]. Chinese Journal of Electronics, 2020, 29(1): 16‒21.
|
[18] |
Wu Y D, Weng J, Tang Z, et al. Vulnerabilities, attacks, and countermeasures in Balise-based train control systems [J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(4): 814‒823.
|
[19] |
丛培天 . 中国脉冲功率科技进展简述 [J]. 强激光与粒子束 , 2020 , 32 2 : 2 ‒ 12 .
|
[20] |
Zhang J, Zhang D, Fan Y W, et al. Progress in narrowband high-power microwave sources [J]. Physics of Plasmas, 2020, 27(1): 1‒15.
|
[21] |
Drikas Z B, Addissie B D, Mendez V M, et al. A compact, high-gain, high-power, ultrawideband microwave pulse compressor using time-reversal techniques [J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(8): 3355‒3367.
|
[22] |
Shi L H, Zhang X, Sun Z, et al. An overview of the HEMP research in China [J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 422‒430.
|
[23] |
Baker G H, Radasky W A, Gilbert J L. Electromagnetic pulse(EMP) protection and resilience guidelines for critical infrastructure and equipment [EB/OL]. (2019-02-05)[2021-12-10]. https: //michaelmabee.info/electromagnetic-pulse-emp-protection-and-resilience-guidelines/.
|
[24] |
Electric Power Research Institute(EPRI). High-altitude electromagnetic pulse and the bulk power system: Potential impacts and mitigation strategies [R]. Palo Alto: Electric Power Research Institute(EPRI), 2019.
|
[25] |
Pierre B J, Guttromson R T, Eddy J, et al. A framework to evaluate grid consequences from high altitude EMP events [EB/OL]. (2020-07-16)[2022-06-01]. https: //www.osti.gov/servlets/purl/1810043.
|
[26] |
Yates L, Gunning B P, Crawford M H, et al. Demonstration of >6.0 kV breakdown voltage in large area vertical GaN P-N diodes with step-etched junction termination extensions [J]. IEEE Transactions on Electron Devices, 2022, 69(4): 1931‒1937.
|
[27] |
Arnesen O-H, Hoad R. Overview of the European project "HIPOW" [J]. IEEE Electromagnetic Compatibility Magazine, 2014, 3(4): 64‒67.
|
[28] |
Beek S, Dawson J, Flintoft I, et al. Overview of the European project STRUCTURES [J]. IEEE Electromagnetic Compatibility Magazine, 2014, 3(4): 70‒79.
|
/
〈 |
|
〉 |