
流域水土环境污染跨介质治理策略
Cross-Medium Control of Water and Soil Environmental Pollution in Watershed
污染物在流域水土环境中存在复杂的源汇关系,在水土环境中的转化作用主要受控于各种水‒ 土界面过程,为此,水土环境污染治理需将水土环境作为一个整体,通过跨介质归因识别找到真正的污染源,然后进行跨介质治理。本文首先分析了污染物在流域水土环境中的跨水‒ 土介质迁移过程以及主要影响因素,在此基础上提出了流域水土环境跨介质调控原理及关键过程,主要包括流域水土环境污染跨介质归因识别和流域水土环境污染跨介质治理。同时,重点阐述了污染物在河道外的土壤‒ 水界面、坡面‒ 河道界面,河道内的水‒ 沉积物界面(包括河床潜流带和侧向岸边潜流带的水‒固界面)和水‒ 悬浮颗粒物界面过程在跨介质去除中的重要作用,并采用实际案例阐述了流域非点源污染物的跨介质控制、河流含氮化合物的跨介质去除以及湖泊氮磷的跨介质去除方法等。研究结果可为流域水土环境污染防治提供科学依据。
Pollutants have complex source-sink relationships in water and soil environments at a catchment scale, and the transformation of pollutants in water and soil environments is primarily controlled by various water-soil interface processes. Therefore, the control of water and soil environmental pollution should consider water and soil environments as a whole, identify the real pollution source through cross-medium attribution analysis, and then control the pollution with cross-medium treatment. We first analyze the crossmedium migration processes of pollutants and the major influencing factors. Then we propose the principle and key process of crossmedium regulation, namely, cross-medium attribution identification and cross-medium treatment of water and soil environmental pollution. Moreover, we expound the important role of the processes of the following interfaces in cross-medium removal of pollutants: soil-water and slope-channel interfaces outside river channels, as well as water-sediment and water-suspended particulate matter interfaces in river channels (including water-solid interfaces in the riverbed and lateral shore hyporheic zones). Furthermore, cross-medium control of non-point source pollutants in watershed, cross-medium removal of nitrogen-containing compounds from rivers, and cross-medium removal of nitrogen and phosphorus from lakes are illustrated with practical cases. The research results can provide a scientific basis for the control and treatment of water and soil pollution.
流域 / 水土污染防治 / 水土环境 / 水 ‒ 沉积物界面 / 水环境质量 / 跨介质治理
watershed / water and soil pollution control / water and soil environment / water-sediment interface / water environment quality / cross-medium treatment
[1] |
庄国泰 . 我国土壤污染现状与防控策略 [J]. 中国科学院院刊 , 2015 , 30 4 : 477 ‒ 483 .
|
[2] |
张维蓉 , 张梦然 . 当前我国水污染现状、原因及应对措施研究 [J]. 水利技术监督 , 2020 6 : 93 ‒ 98 .
|
[3] |
Galloway J N , Dentener F J , Capone D G , al e t . Nitrogen cycles: Past, present, and future [J]. Biogeochemistry , 2004 , 70 2 : 153 ‒ 226 .
|
[4] |
Zhu Y , Price O R , Kilgallon J , al e t . A multimedia fate model to support chemical management in China: A case study for selected trace organics [J]. Environmental Science Technology , 2016 , 50 13 : 7001 ‒ 7009 .
|
[5] |
C Jones K . Persistent organic pollutants POPs and related chemicals in the global environment: some personal reflections [J]. Environmental Science Technology , 2021 , 55 14 : 9400 ‒ 9412 .
|
[6] |
张丽红 . 河北清苑县重金属污染水土环境风险评估 [D]. 北京 : 中国地质大学硕士学位论文 , 2011 .
|
[7] |
代朝猛 , 沈晖 , 段艳平 , 等 . 土壤和地下水环境中纳米材料迁移的研究进展 [J]. 水资源与水工程学报 , 2018 , 29 3 : 236 ‒ 242, 248 .
|
[8] |
中华人民共和国环境保护部 , 中华人民共和国国家统计局 , 中华人民共和国农业部 . 全国第一次污染源普查公报 [EBOL]. 2010-02-10 [ 2022-06-12 ]. http:g.mnr.gov.cn201701t20170123_1428261.html .
|
[9] |
M Michalak A . Study role of climate change in extreme threats to water quality [J]. Nature , 2016 , 535 7612 : 349 ‒ 350 .
|
[10] |
Xia X H , Li S L , Wang F , al e t . Triple oxygen isotopic evidence for atmospheric nitrate and its application in source identification for river systems in the Qinghai-Tibetan Plateau [J]. Science of the Total Environment , 2019 , 688 : 270 ‒ 280 .
|
[11] |
Liu T , Wang F , Michalski G , al e t . Using 15N, 17O, and 18O to determine nitrate sources in the Yellow River, China [J]. Environmental Science Technology , 2013 , 47 23 : 13412 ‒ 13421 .
|
[12] |
Calisto V , Domingues M R M , I Esteves V . Photodegradation of psychiatric pharmaceuticals in aquatic environments—Kinetics and photodegradation products [J]. Water Research , 2011 , 45 18 : 6097 ‒ 6106 .
|
[13] |
Pascoe D , Karntanut W , T Müller C . Do pharmaceuticals affect freshwater invertebrates? A study with the cnidarian Hydra vulgaris [J]. Chemosphere , 2003 , 51 6 : 521 ‒ 528 .
|
[14] |
胡伟 . 天津城市水、土环境中典型药物与个人护理品PPCPs分布及其复合雌激素效应研究 [D]. 天津 : 南开大学博士学位论文 , 2011 .
|
[15] |
Yuan S L , Jiang X M , Xia X H , al e t . Detection, occurrence and fate of 22 psychiatric pharmaceuticals in psychiatric hospital and municipal wastewater treatment plants in Beijing, China [J]. Chemosphere , 2013 , 90 10 : 2520 ‒ 2525 .
|
[16] |
Liu T , Xia X H , Liu S D , al e t . Acceleration of denitrification in turbid rivers due to denitrification occurring on suspended sediment in oxic waters [J]. Environmental Science Technology , 2013 , 47 9 : 405 ‒ 4061 .
|
[17] |
Xia X H , Liu T , Yang Z F , al e t . Dissolved organic nitrogen transformation in river water: Effects of suspended sediment and organic nitrogen concentration [J]. Journal of Hydrology , 2013 , 484 : 96 ‒ 104 .
|
[18] |
Xia X H , Wang R . Effect of sediment particle size on polycyclic aromatic hydrocarbon biodegradation: Importance of the sediment-water interface [J]. Environmental Toxicology and Chemistry , 2008 , 27 1 : 119 ‒ 125 .
|
[19] |
Xia X H , Yu H , Yang Z F , al e t . Biodegradation of polycyclic aromatic hydrocarbons in the natural waters of the Yellow River: Effects of high sediment content on biodegradation [J]. Chemosphere , 2006 , 65 3 : 457 ‒ 466 .
|
[20] |
Liu R M , Zhang P P , Wang X J , al e t . Cost-effectiveness and cost-benefit analysis of BMPs in controlling agricultural nonpoint source pollution in China based on the SWAT model [J]. Environmental Monitoring and Assessment , 2014 , 186 : 9011 ‒ 9022 .
|
[21] |
Liu R M , Zhang P P , Wang X J , al e t . Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed [J]. Agricultural Water Management , 2013 , 117 : 9 ‒ 18 .
|
[22] |
Dillaha T A , Reneau R B , Mostaghimi S , al e t . Vegetative filter strips for agricultural non-point source pollution control [J]. Transactions of the American Society of Agricultural Engineers , 1989 , 32 2 : 513 ‒ 519 .
|
[23] |
李怀恩 , 邓娜 , 杨寅群 , 等 . 植被过滤带对地表径流中污染物的净化效果 [J]. 农业工程学报 , 2010 , 26 7 : 81 ‒ 86 .
|
[24] |
张培培 , 李琼 , 阚红涛 , 等 . 基于SWAT模型的植草河道对非点源污染控制效果的模拟研究 [J]. 农业环境科学学报 , 2014 , 33 6 : 1204 - 1209 .
|
[25] |
Xia X H , Jia Z M , Liu T , al e t . Coupled nitrification-denitrification caused by suspended sediment SPS in rivers: Importance of SPS size and composition [J]. Environmental Science Technology , 2017 , 51 1 : 212 ‒ 221 .
|
[26] |
Xia X H , Liu T , Yang Z F , al e t . Enhanced nitrogen loss from rivers through coupled nitrification-denitrification caused by suspended sediment [J]. Science of the Total Environment , 2017 , 579 : 47 ‒ 59 .
|
[27] |
Quick A M , Reeder W J , Farrell T B , al e t . Controls on nitrous oxide emissions from the hyporheic zones of streams [J]. Environmental Science Technology , 2016 , 50 21 : 11491 ‒ 11500 .
|
[28] |
Pei Y S , Wang J , Wang Z Y , al e t . Anammox bacteria community and nitrogen removal in a strip-like wetland in the riparian zone [J]. Journal of Environmental Science and Health, Part A , 2011 , 46 7 : 715 ‒ 722 .
|
[29] |
Pei Y S , Yang Z F , Tian B H . Nitrate removal by microbial enhancement in a riparian wetland [J]. Bioresource Technology , 2010 , 101 14 : 5712 ‒ 5718 .
|
[30] |
Ying Z , Yang Z F , Xia X H , al e t . A shallow lake remediation regime with Phragmites australis: Incorporating nutrient removal and water evapotranspiration [J]. Water Research , 2012 , 46 17 : 5635 ‒ 5644 .
|
/
〈 |
|
〉 |