华北地区生态保护与恢复的水资源效应研究

孙思琦, 陈永喆, 王聪, 胡庆芳, 吕一河

中国工程科学 ›› 2022, Vol. 24 ›› Issue (5) : 97-106.

PDF(1706 KB)
PDF(1706 KB)
中国工程科学 ›› 2022, Vol. 24 ›› Issue (5) : 97-106. DOI: 10.15302/J-SSCAE-2022.05.012
水平衡与国土空间协调发展战略研究
Orginal Article

华北地区生态保护与恢复的水资源效应研究

作者信息 +

Water Resource Effectiveness of Vegetation Conservation and Restoration in North China

Author information +
History +

摘要

近年来,华北地区实施了一系列生态保护与恢复工程,植被生态状况发生了显著变化;探究区域植被恢复对水循环过程及水资源供需平衡的影响,对于完善生态恢复策略、实现区域水资源可持续利用十分重要。本文采用皮尔逊相关系数和莫兰指数,结合多源水参量数据进行综合性分析,阐释了植被和不同水参量的时空变化情况,甄别了植被保育与恢复下的水资源变化响应,进而探讨了华北地区水资源与植被恢复的权衡关系。研究结果表明,华北地区的生态保护与恢复工程成效显著,植被净初级生产力的增速约为恢复工程区外的2.3 倍;植被的扩张与蒸散量表现出空间与时间上的强相关性;植被恢复引起的蒸散量提高是引起水储量赤字或显著降低的主要原因。为此建议,华北地区可完善生态恢复策略,在植被保育与恢复过程中考虑水资源的限制作用;以自然恢复方式为主,促进生态恢复的可持续性、水资源的可利用性。

Abstract

In recent years, a series of ecological protection and restoration projects has been implemented in North China, and the vegetation conditions have changed significantly. Exploring the impact of regional vegetation restoration on the water circulation process and the balance of water supply and demand is important for improving ecological restoration strategies and realizing the sustainable utilization of regional water resources. This study conducted a comprehensive analysis using the Pearson correlation coefficient and Moran’s I index and based on multi-source water covariate data. The spatial and temporal variation of vegetation and different water covariates is analyzed, the water resource effects of vegetation conservation and restoration are identified, and the tradeoff between water resources and vegetation restoration is discussed. The results show that the effects of ecological protection and restoration projects are remarkable, with the net primary productivity increasing at a rate of approximately 2.3 times faster than that outside the project area; the vegetation expansion and evapotranspiration show strong spatial and temporal correlations; and the increase in evapotranspiration owing to vegetation restoration is the main reason for the deficit or significant reduction in water storage. Therefore, it is necessary to improve the implementation strategy of ecological restoration while considering the restriction of water resources on vegetation conservation and restoration, strengthen the dominant position of the ecosystem’s own resilience, and promote the sustainability of vegetation restoration and the sustainable use of regional water esources.

关键词

华北地区 / 生态恢复工程 / 蒸散发 / 水储量 / 植被净初级生产力 / 自然恢复

Keywords

North China / ecological restoration projects / evapotranspiration / water storage / net primary productivity / atural restoration

引用本文

导出引用
孙思琦, 陈永喆, 王聪. 华北地区生态保护与恢复的水资源效应研究. 中国工程科学. 2022, 24(5): 97-106 https://doi.org/10.15302/J-SSCAE-2022.05.012

参考文献

[1]
Wang F , Pan X B , Gerlein-Safdi C , al e t ‍. Vegetation restoration in Northern China: A contrasted picture [J]‍. Land Degradation Development , 2020 , 31 6 : 669 ‒ 676 ‍.
[2]
任海 , 陆宏芳 , 李意德 , 等‍ ‍. 植被生态系统恢复及其在华南的研究进展 [J ]‍. 热带亚热带植物学报, 2019 , 27 5:469‒480‍.
[3]
Liu J G , Li S X , Ouyang Z Y , al e t ‍. Ecological and socioeconomic effects of China´s policies for ecosystem services [J]‍. Proceedings of the National Academy of Sciences of the United States of America , 2008 , 105 28 : 9477 ‒ 9482 ‍.
[4]
Zhao Q , Yang L , Wang X , al e t ‍. Effects of two typical revegetation methods on soil moisture in the semi-arid Loess Plateau, China [J]‍. Hydrology Research , 2019 , 50 5 : 1453 ‒ 1462 ‍.
[5]
胡婵娟 , 郭雷‍ . 植被恢复的生态效应研究进展 [J]‍. 生态环境学报 , 2012 , 21 9 : 1640 ‒ 1646 ‍.
[6]
Feng S Y , Liu X , Zhao W W , al e t ‍. Key areas of ecological restoration in Inner Mongolia based on ecosystem vulnerability and ecosystem service [J]‍. Remote Sensing , 2022 , 14 12 : 1 ‒ 15 ‍.
[7]
Wang H , Zhao W W , Li C J , al e t ‍. Vegetation greening partly offsets the water erosion risk in China from 1999 to 2018 [J]‍. Geoderma , 2021 , 401 : 1 ‒ 10 ‍.
[8]
Wen X , Deng X Z , Zhang F‍ . Scale effects of vegetation restoration on soil and water conservation in a semi-arid region in China: Resources conservation and sustainable for management [J]‍. Resources Conservation and Recycling , 2019 , 151 : 1 ‒ 15 ‍.
[9]
Li W F , Hai X , Han L J , al e t ‍. Does urbanization intensify regional water scarcity? Evidence and implications from a megaregion of China [J]‍. Journal of Cleaner Production , 2020 , 244 : 1 ‒ 10 ‍.
[10]
陈飞 , 丁跃元 , 李原园 , 等‍ . 华北地区地下水超采治理实践与思考 [J]‍. 南水北调与水利科技 , 2020 , 18 2 : 191 ‒ 198 ‍.
[11]
朱泰峰‍ . 华北山区土地利用覆被变化及其水资源效应——以北京市门头沟区为例 [D]‍. 北京 : 中国农业大学博士学位论文 , 2014 ‍.
[12]
王林娜 , 韩淑敏 , 李会龙 , 等‍ . 华北平原蒸散发变化及对植被生产力的响应 [J]‍. 中国生态农业学报 , 2022 , 30 5 : 735 ‒ 746 ‍.
[13]
Skerlep M , Steiner E , Axelsson A L , al e t ‍. Afforestation driving long-term surface water browning [J]‍. Global Change Biology , 2020 , 26 3 : 1390 ‒ 1399 ‍.
[14]
Li Y , Piao S L , Li L Z X , al e t ‍. Divergent hydrological response to large-scale afforestation and vegetation greening in China [J]‍. Science Advances , 2018 , 4 5 : 1 ‒ 15 ‍.
[15]
Bonnesoeur V , Locatelli B , Guariguata M R , al e t ‍. Impacts of forests and forestation on hydrological services in the Andes: A systematic review [J]‍. Forest Ecology and Management , 2019 , 433 : 569 ‒ 584 ‍.
[16]
Menz M H M , Dixon K W , J‍ Hobbs R . Hurdles and opportunities for landscape-scale restoration [J]‍. Science , 2013 , 339 6119 : 526 ‒ 527 ‍.
[17]
Zastrow M‍ . China´s tree-planting could falter in a warming world [J]‍. Nature , 2019 , 573 7775 : 474 ‒ 475 ‍.
[18]
Xiao Y , Xiao Q‍ . The ecological consequences of the large quantities of trees planted in Northwest China by the Government of China [J]‍. Environmental Science and Pollution Research , 2019 , 26 32 : 33043 ‒ 33053 ‍.
[19]
Feng X M , Fu B J , Piao S L , al e t ‍. Revegetation in China´s Loess Plateau is approaching sustainable water resource limits [J]‍. Nature Climate Change , 2016 , 6 11 : 1019 ‒ 1022 ‍.
[20]
赵舒怡 , 宫兆宁 , 刘旭颖‍ . 2001—2013年华北地区植被覆盖度与干旱条件的相关分析 [J]‍. 地理学报 , 2015 , 70 5 : 717 ‒ 729 ‍.
[21]
严伟卿 , 刘冀 , 赵心睿 , 等‍ . 基于Budyko假设的金溪流域径流变化归因分析 [EBOL]‍. 2022-08-17 [ 2022-09-02 ]‍. https:kns‍.cnki‍.netkcmsdetaildetail‍.aspx?dbcode=CAPJdbname=CAPJLASTfilename=STBY20220815000v=MzE0NTZUM2ZscVdNMENMTDdSN3Fk‍WmV‍abUZDamxWN3ZQS‍lZZPU5qbk‍pkN0c0SE5QTXA0NUFaT3NQWXc5TXptUm42ajU3‍ .
[22]
茹少峰 , 马茹慧‍ . 黄河流域生态环境脆弱性评价、空间分析及预测 [J]‍. 自然资源学报 , 2022 , 37 7 : 1722 ‒ 1734 ‍.
[23]
Stahl K , Tallaksen L M , Hannaford J , al e t ‍. Filling the white space on maps of European runoff trends: Estimates from a multi-model ensemble [J]‍. Hydrology and Earth System Sciences , 2012 , 16 7 : 2035 ‒ 2047 ‍.
[24]
Beck H E , Van Dijk A I J M , Levizzani V , al e t ‍. MSWEP: 3-hourly 0‍.25 degrees global gridded precipitation 1979—2015 by merging gauge, satellite, and reanalysis data [J]‍. Hydrology and Earth System Sciences , 2017 , 21 1 : 589 ‒ 615 ‍.
[25]
He J , Yang K , Tang W J , al e t ‍. The first high-resolution meteorological forcing dataset for land process studies over China [J]‍. Scientific Data , 2020 , 7 : 1 ‒ 10 ‍.
[26]
Huffman G , Bolvin D T , Nelkin E J , al e t ‍. Integrated multi-satellitE retrievals for GPM IMERG technical documentation [EBOL]‍. 2020-10-06 [ 2022-05-15 ]‍. https:docserver‍.gesdisc‍.eosdis‍.nasa‍.govpublicprojectGPMIMERG_doc‍.06‍.pdf‍ .
[27]
Hijmans R J , Cameron S E , Parra J L , al e t ‍. Very high resolution interpolated climate surfaces for global land areas [J]‍. International Journal of Climatology , 2005 , 25 15 : 1965 ‒ 1978 ‍.
[28]
Abatzoglou J T , Dobrowski S Z , Parks S A , al e t ‍. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958—2015 [J]‍. Scientific Data , 2018 , 5 : 1 ‒ 10 ‍.
[29]
Rodell M , Houser P R , Jambor U , al e t ‍. The global land data assimilation system [J]‍. Bulletin of the American Meteorological Society , 2004 , 85 3 : 381 ‒ 394 ‍.
[30]
Mcnally A , Arsenault K , Kumar S , al e t ‍. A land data assimilation system for sub-Saharan Africa food and water security applications [J]‍. Scientific Data , 2017 , 4 : 1 ‒ 10 ‍.
[31]
Yin L C , Tao F L , Chen Y‍ , al e t ‍. Improving terrestrial evapotranspiration estimation across China during 2000—2018 with machine learning methods [J]‍. Journal of Hydrology , 2021 , 600 : 1 ‒ 12 ‍.
[32]
Running S , Mu Q , Zhao M , al e t ‍. MOD 16 A 3 GF MODISTerra net evapotranspiration gap-filled yearly L4 global 500 m SIN grid v006 [EBOL] 2010-02-18 [ 2022-05-15 ]‍. https:search‍.earthdata‍.nasa‍.govsearch?q=C1631982992-LPDAAC_ECS‍ .
[33]
G‍ Miralles D , Holmes T R H , De Jeu R A M , al e t ‍. Global land-surface evaporation estimated from satellite-based observations [J]‍. Hydrology and Earth System Sciences , 2011 , 15 2 : 453 ‒ 469 ‍.
[34]
Chen Y Z , Feng X M , Tian H Q , al e t ‍. Accelerated increase in vegetation carbon sequestration in China after 2010: A turning point resulting from climate and human interaction [J]‍. Global Change Biology , 2021 , 27 22 : 5848 ‒ 5864 ‍.
[35]
Yu L , Wu Z T , Du Z Q , al e t ‍. Insights on the roles of climate and human activities to vegetation degradation and restoration in Beijing-Tianjin sandstorm source region [J]‍. Ecological Engineering , 2021 , 159 : 1 ‒ 12 ‍.
[36]
Jackson R B , Jobbagy E G , Avissar R , al e t ‍. Trading water for carbon with biological sequestration [J]‍. Science , 2005 , 310 5756 : 1944 ‒ 1947 ‍.
[37]
Bosch J M , D‍ Hewlett J . A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration [J]‍. Journal of Hydrology , 1982 , 55 1 ‒ 4 : 3 ‒ 23 ‍.
[38]
Fang J Y , Guo Z D , Piao S L , al e t ‍. Terrestrial vegetation carbon sinks in China, 1981—2000 [J]‍. Science in China Series D: Earth Sciences , 2007 , 50 9 : 1341 ‒ 1350 ‍.
[39]
Wang S , Fu B J , Piao S L , al e t ‍. Reduced sediment transport in the Yellow River due to anthropogenic changes [J]‍. Nature Geoscience , 2016 , 9 1 : 38 ‒ 41 ‍.
[40]
Farley K A , Jobbagy E G , B‍ Jackson R . Effects of afforestation on water yield: A global synthesis with implications for policy [J]‍. Global Change Biology , 2005 , 11 10 : 1565 ‒ 1576 ‍.
[41]
周可新‍ . 生态文明视域下自然生态系统的科学保护 [J]‍. 中国生态文明 , 2019 2 : 31 ‒ 33 ‍.
[42]
Zhang D J , Ge W Y , Zhang Y‍ . Evaluating the vegetation restoration sustainability of ecological projects: A case study of Wuqi County in China [J]‍. Journal of Cleaner Production , 2020 , 264 : 1 ‒ 12 ‍.
[43]
Wang J , Zhao W W , Zhang X , al e t ‍. Effects of reforestation on plant species diversity on the Loess Plateau of China: A case study in Danangou catchment [J]‍. Science of the Total Environment , 2019 , 651 : 979 ‒ 989 ‍.
[44]
Crouzeilles R , Ferreira M S , Chazdon R L , al e t ‍. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests [J]‍. Science Advances , 2017 , 3 11 : 1 ‒ 12 ‍.
[45]
Shao R , Zhang B Q , Su T X , al e t ‍. Estimating the increase in regional evaporative water consumption as a result of vegetation restoration over the Loess Plateau, China [J]‍. Journal of Geophysical Research: Atmospheres , 2019 , 124 22 : 11783 ‒ 11802 ‍.
[46]
Mcvicar T R , Van Niel T G , Li L T , al e t ‍. Parsimoniously modelling perennial vegetation suitability and identifying priority areas to support China´s re-vegetation program in the Loess Plateau: Matching model complexity to data availability [J]‍. Forest Ecology and Management , 2010 , 259 7 : 1277 ‒ 1290 ‍.
[47]
徐雪‍ . 基于LAINPP的全球保护区植被保护效度分析 [D]‍. 贵阳 : 贵州师范大学硕士学位论文 , 2022 ‍.
[48]
周国逸 , 夏军 , 周平 , 等‍ . 不恰当的植被恢复导致水资源减少 [J]‍. 中国科学: 地球科学 , 2021 , 51 2 : 175 ‒ 182 ‍.
基金
中国工程院咨询项目“水平衡与国土空间协调发展战略研究(一期)”(2020-ZD-20)
PDF(1706 KB)

Accesses

Citation

Detail

段落导航
相关文章

/