
中国极端降水和高温历史变化及未来趋势
Historical Changes and Future Trends of Extreme Precipitation and High Temperature in China
在全球变暖背景下,我国极端事件频发,了解和掌握极端事件的时空变化,合理预估极端事件的未来趋势,可为制定区域气候变化适应策略提供理论依据。本文利用CN05.1 全国网格气象数据和第六次国际耦合模式比较计划(CMIP6)的11 种全球气候模式,分析了我国1975—2014 年历史极端降水和高温事件的演变特征,研判了2015—2054 年极端事件的变化情况,提出了应对极端事件的政策建议。结果表明:① 1975—2014 年,全国强降水量呈现由西北向东南依次增加‒ 减少‒增加的空间格局,胡焕庸线以东地区极端降水风险和危险性较大;在选取的两种对比情景下,2015—2054 年,我国极端降水将普遍增多趋强,其中华北和东北地区极端降水事件增幅较大,西北地区强降水量将进一步增加。② 我国1975—2014 年暖夜日数和暖昼日数均呈显著增加趋势,暖夜日数增幅高于暖昼日数增幅;在选取的两种对比情景下,2015—2054 年,我国极端高温事件将显著增加,西北、西南和华南等地区的高温热浪风险增幅最大。为减缓气候变化影响和应对未来极端事件风险,应进一步提升洪涝灾害和高温热浪风险应对和应急管理能力,强化国际合作并因地制宜制定相关适应气候变化战略,以防范和应对全球变暖引起的极端灾害。
Extreme events occur frequently in China against the background of global warming. Understanding the spatiotemporal variation of extreme events and predicting their future trends can provide a theoretical basis for formulating regional strategies that adapt to climate change. Using the CN05.1 grid meteorological data and eleven global climate models based on Coupled Model Intercomparison Project Phase 6 (CMIP6), we analyzed the evolution characteristics of extreme precipitation and high temperature events in China from 1975 to 2014, predicted the evolution of extreme events from 2015 to 2054, and proposes policy suggestions for dealing with these events. The results indicate that, from 1975 to 2014, the heavy precipitation exhibited an increasing-decreasing-increasing pattern from the northwest to southeast region of China, and the risk and catastrophability of extreme precipitation in regions located to the east of the Hu Line were great. Under SSP1-2.6 and SSP5-8.5 climate change scenarios, extreme precipitation in China will generally increase and become stronger by 2054, with a significant increase in North and Northeast China and a further increase in Northwest China. From 1975 to 2014, the number of warm nights and warm days in China increased significantly, and the increase in warm nights was higher than that of warm days. Under the SSP1-2.6 and SSP5-8.5 climate change scenarios, extreme heat events in China will increase significantly by 2054, with the greatest increase in Northwest, Southwest, and South China. To mitigate the impact of climate change and cope with the risk of extreme events in the future, China should further improve its response and emergency management capacities for dealing with flood and extreme heat risks, strengthen international cooperation, and formulate strategies adapted to local conditions.
climate change / extreme event / CMIP6 / extreme disaster response
[1] |
Blunden J , Boyer T . State of the climate in 2021 [J]. Bulletin of the American Meteorological Society , 2022 , 103 8 : 1 ‒ 475 .
|
[2] |
Eckstein D , Künzel V , Schäfer L . Global climate risk index 2021 [EBOL]. 2021-01-25 [ 2022-07-20 ]. https: www.germanwatch.orgen19777 .
|
[3] |
Blöschl G , Hall J , Viglione A , et al . Changing climate both increases and decreases European river floods [J]. Nature , 2019 , 573 7772 : 108 ‒ 111 .
|
[4] |
Kraaijenbrink P D A , Bierkens M F P , Lutz A F , et al . Impact of a global temperature rise of 1.5 degrees Celsius on Asia´s glaciers [J]. Nature , 2017 , 549 7671 : 257 ‒ 260 .
|
[5] |
翟盘茂 , 周佰铨 , 陈阳 , 等 . 气候变化科学方面的几个最新认知 [J]. 气候变化研究进展 , 2021 , 17 6 : 629 ‒ 635 .
|
[6] |
尹家波 , 郭生练 , 顾磊 , 等 . 中国极端降水对气候变化的热力学响应机理及洪水效应 [J]. 科学通报 , 2021 , 66 33 : 4315 ‒ 4325 .
|
[7] |
Wang Y , Wang A , Zhai J , et al . Tens of thousands additional deaths annually in cities of China between 1.5 ℃ and 2.0 ℃ warming [J]. Nature Communications , 2019 , 10 1 : 1 ‒ 7 .
|
[8] |
The United Nations , The United Nations Framework Convention on Climate ChangeUNFCCC . Adoption of the Paris agreement [EBOL]. 2015-12-12 [ 2022-07-20 ]. https: unfccc.intresourcedocs2015cop21engl09r01.pdf .
|
[9] |
Samset B H , Zhou C , Fuglestvedt J S , et al . Earlier emergence of a temperature response to mitigation by filtering annual variability [J]. Nature Communications , 2022 , 13 1 : 1 ‒ 9 .
|
[10] |
Dvorak M T , Armour K C , Frierson D M W , et al . Estimating the timing of geophysical commitment to 1.5 and 2.0 ℃ of global warming [J]. Nature Climate Change , 2022 , 12 : 547 ‒ 552 .
|
[11] |
庄园煌 , 张井勇 , 梁健 . 1 . 5 ℃与2 ℃温升目标下"一带一路"主要陆域气温和降水变化的CMIP6多模式预估 [J]. 气候与环境研究 , 2021, 26 4 : 374 - 390 .
|
[12] |
Luo N , Guo Y , Gao Z , et al . Assessment of CMIP6 and CMIP5 model performance for extreme temperature in China [J]. Atmospheric and Oceanic Science Letters , 2020 , 13 6 : 589 - 597 .
|
[13] |
王予 , 李惠心 , 王会军 , 等 . CMIP6全球气候模式对中国极端降水模拟能力的评估及其与CMIP5的比较 [J]. 气象学报 , 2021 , 79 3 : 369 ‒ 386 .
|
[14] |
Yin J , Guo S , Gu L , et al . Projected changes of bivariate flood quantiles and estimation uncertainty based on multi-model ensembles over China [J]. Journal of Hydrology , 2020 , 585 3 : 124760 .
|
[15] |
翟盘茂 , 刘静 . 气候变暖背景下的极端天气气候事件与防灾减灾 [J]. 中国工程科学 , 2012 , 14 9 : 55 ‒ 63, 84 .
|
[16] |
Yue S , Wang C Y . The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series [J]. Water Resources Management , 2004 , 18 3 : 201 ‒ 218 .
|
[17] |
任国玉 , 任玉玉 , 战云健 , 等 . 中国大陆降水时空变异规律——Ⅱ.现代变化趋势 [J]. 水科学进展 , 2015 , 26 4 : 451 ‒ 465 .
|
[18] |
江洁 , 周天军 , 张文霞 . 近60年来中国主要流域极端降水演变特征 [J]. 大气科学 , 2022 , 46 3 : 707 ‒ 724 .
|
[19] |
杨阳 , 赵娜 , 岳天祥 . 1980—2018年中国极端高温事件时空格局演变特征 [J]. 地理科学 , 2022 , 42 3 : 536 ‒ 547 .
|
[20] |
张强 , 朱飙 , 杨金虎 , 等 . 西北地区气候湿化趋势的新特征 [J]. 科学通报 , 2021 , 66 Z2 : 3757 ‒ 3771 .
|
[21] |
朱欢欢 , 姜胜 , 江志红 . 基于可靠性集合平均方法的全球1.52.0 ℃变暖下中国极端气候的未来预估 [J]. 地球科学进展 , 2022 , 37 6 : 612 ‒ 626 .
|
[22] |
舒章康 , 张建云 , 金君良 , 等 . 1961—2018年中国主要江河枯季径流演变特征与成因 [J]. 气候变化研究进展 , 2021 , 17 3 : 340 ‒ 351 .
|
[23] |
Vicedo-Cabrera A M , Scovronick N , Sera F , et al . The burden of heat-related mortality attributable to recent human-induced climate change [J]. Nature Climate Change , 2021 , 11 6 : 492 ‒ 500 .
|
[24] |
孔锋 . 透视变化环境下的中国城市暴雨内涝灾害: 形势、原因与政策建议 [J]. 水利水电技术 , 2019 , 50 10 : 42 ‒ 52 .
|
[25] |
张建云 , 刘九夫 , 金君良 . 关于智慧水利的认识与思考 [J]. 水利水运工程学报 , 2019 6 : 1 ‒ 7 .
|
[26] |
黄群芳 . 城市空间形态对城市热岛效应的多尺度影响研究进展 [J]. 地理科学 , 2021 , 41 10 : 1832 ‒ 1842 .
|
[27] |
程顺祺 , 王少谷 , 陈晨 , 等 . 整体性政府视角下高温热浪应急管理的协同联动机制研究 [J]. 灾害学 , 2019 , 34 3 : 160 ‒ 166 .
|
[28] |
曹志杰 , 陈绍军 . 气候风险视阈下气候贫困的形成机理与演变态势 [J]. 河海大学学报哲学社会科学版 , 2016 , 18 5 : 52 ‒ 59, 91 .
|
/
〈 |
|
〉 |