肿瘤临床大数据管理系统设计与应用

马麟, 包晨露, 李青, 吴静依, 潘虹安, 李鹏飞, 张路霞, 詹启敏

中国工程科学 ›› 2022, Vol. 24 ›› Issue (6) : 127-136.

PDF(4023 KB)
PDF(4023 KB)
中国工程科学 ›› 2022, Vol. 24 ›› Issue (6) : 127-136. DOI: 10.15302/J-SSCAE-2022.06.011
食品营养与健康战略研究
Orginal Article

肿瘤临床大数据管理系统设计与应用

作者信息 +

Design and Application of Clinical Big Data Management System for Oncology

Author information +
History +

摘要

肿瘤是人类生命健康的重要威胁,随着我国医疗行业信息化的发展,医疗机构积累了大量的肿瘤临床数据,但因数据标准不统一、治理难度大等原因制约了数据价值的充分挖掘;应用人工智能(AI)等前沿信息技术建设肿瘤临床大数据管理系统,有助于肿瘤临床数据的深入应用、临床诊疗管理质量与效率提升。本文剖析了我国肿瘤临床数据治理与应用面临的问题及挑战,研判了肿瘤临床大数据管理体系的应用价值;针对肿瘤临床数据多来源、多模态的复杂特性,探索了AI 技术应用于肿瘤临床大数据管理与科研的机制及路径;设计了包括肿瘤通用数据模型构建、临床数据采集与安全管理、标准化结构化治理、分析与建模应用、数据质量管理在内的全流程解决方案,阐述了相应系统的建设框架与技术体系;以某三甲医院肺癌临床大数据平台为案例,展示了所提方案在临床实践中的可行性及应用价值。相关研究可为丰富我国肿瘤临床大数据管理系统的建设实践、探讨领域未来重点研究方向提供参考和启示。

Abstract

Cancer is a serious threat to human life and health. Along with the development of medical informatization in China, healthcare institutions have cumulated a great quantity of clinical data in oncology; however, these data have not been fully explored owing to the disunity of data standards and great difficulties in data management. Hence, establishing a national clinical big data management system for oncology based on artificial intelligence could potentially promote the application of clinical data in oncology, further improving the quality and efficiency of clinical management for oncology. This study conducted an in-depth analysis of the problems and challenges of clinical data management and application for oncology and presented the significant values of an oncology clinical data management system. Considering the complexity of multi-source and multi-modal data in oncology, we explored the possible mechanisms and pathways of applying artificial intelligence to the management and research of clinical data for oncology Furthermore, a full-circle solution was designed, and the construction framework and technology systems were promoted for the clinical data management system for oncology, including the development of common data models for oncology, data collection and security management, data standardization and structuring, data analysis and application, and data quality control. Besides, we validated the feasibility and benefits of the promoted system in clinical practice by taking the clinical data management for lung cancer in a tertiary hospital as an example. Finally, we proposed some suggestions on the research directions of the clinical big data management system for oncology.

关键词

临床大数据 / 管理系统 / 肿瘤 / 人工智能 / 通用数据模型 / 自然语言处理

Keywords

clinical big data / management system / oncology / artificial intelligence / common data model / natural language processing

引用本文

导出引用
马麟, 包晨露, 李青. 肿瘤临床大数据管理系统设计与应用. 中国工程科学. 2022, 24(6): 127-136 https://doi.org/10.15302/J-SSCAE-2022.06.011

参考文献

[1]
Ferlay J E M, Lam F, Colombet M, al et‍. Global cancer observatory: Cancer today [R]‍. Lyon: International Agency for Research on Cancer, 2020‍.
[2]
Cao M M, Li H, Sun D Q, al et‍. Cancer burden of major cancers in China: a need for sustainable actions [J]‍. Cancer Communications, 2020, 40(5): 205‒210‍.
[3]
Wang Z Z, Zhou C M, Feng X S, al et‍. Comparison of cancer incidence and mortality between China and the United States [J]‍. Precis Cancer Med, 2021, 4: 31‍.
[4]
Xia C F, Dong X S, Li H, al et‍. Cancer statistics in China and United States, 2022: profiles, trends, and determinants [J]‍. Chinese Medical Journal, 2022, 135(5): 584‒590‍.
[5]
Li P F, Ma L, Liu J, al et‍. Surveillance of noncommunicable diseases: Opportunities in the era of big data [J]‍. Health Data Science, 2022: 1‒10‍.
[6]
Esteva A, Kuprel B, Novoa R A, al et‍. Dermatologist-level classification of skin cancer with deep neural networks [J]‍. Nature, 2017, 542(7639): 115‒118‍.
[7]
McKinney S M, Sieniek M, Godbole V, al et‍. International evaluation of an AI system for breast cancer screening [J]‍. Nature, 2020, 577(7788): 89‒94‍.
[8]
Lu M T, Raghu V K, Mayrhofer T, al et‍. Deep learning using chest radiographs to identify high-risk smokers for lung cancer screening computed tomography: development and validation of a prediction model [J]‍. Annals of Internal Medicine, 2020, 173(9): 704‒713‍.
[9]
Yala A, Lehman C, Schuster T, al et‍. A deep learning mammography-based model for improved breast cancer risk prediction [J]‍. Radiology, 2019, 292(1): 60‒66‍.
[10]
Nagpal K, Foote D, Liu Y, al et‍. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer [J]‍. NPJ Digital Medicine, 2019, 2(1): 1‒10‍.
[11]
Capper D, Jones D T, Sill M, al et‍. DNA methylation-based classification of central nervous system tumours [J]‍. Nature, 2018, 555(7697): 469‒474‍.
[12]
Wang S, Shi J Y, Ye Z X, al et‍. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning [J]‍. European Respiratory Journal, 2019, 53(3): 1‒10‍.
[13]
Chen M Y, Zhang B, Topatana W, al et‍. Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning [J]‍. NPJ Precision Oncology, 2020, 4(1): 1‒7‍.
[14]
Wójcikowski M, Siedlecki P, J‍ Ballester P. Building machine-learning scoring functions for structure-based prediction of intermolecular binding affinity [J]‍. Methods in Molecular Biology, 2019: 1‒12‍.
[15]
Tong Z, Zhou Y, Wang J‍. Identifying potential drug targets in hepatocellular carcinoma based on network analysis and one-class support vector machine [J]‍. Scientific Reports, 2019, 9(1): 1‒9‍.
[16]
Chaudhary K, Poirion O B, Lu L, al et‍. Deep learning-based multi-omics integration robustly predicts survival in liver cancerusing deep learning to predict liver cancer prognosis [J]‍. Clinical Cancer Research, 2018, 24(6): 1248‒1259‍.
[17]
Litchfield K, Reading J L, Puttick C, al et‍. Meta-analysis of tumor-and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition [J]‍. Cell, 2021, 184(3): 596‒614.
[18]
Ginsburg G S, A‍ Phillips K. Precision medicine: From science to value [J]‍. Health Affairs, 2018, 37(5): 694‒701‍.
[19]
姜文华, 王菁蕊‍‍. 医疗大数据在肿瘤早期筛查标志物中的研究现状和前景 [J ]‍. 生物医学工程与临床, 2018 , 22 1:116‒121‍.
[20]
Hamet P, Tremblay J‍. Artificial intelligence in medicine [J]‍. Metabolism, 2017, 69: S36‒S40‍.
[21]
凌红 , 陈龙‍ . 发达国家医院信息系统发展研究及启示 [J]‍. 中国医院管理 , 2014 6 : 78 ‒ 80 ‍.
[22]
Klaassen B, van Beijnum B J, J‍ Hermens H. Usability in telemedicine systems—A literature survey [J]‍. International Journal of Medical Informatics, 2016, 93: 57‒69‍.
[23]
Yu P, Kibbe W‍. Cancer data science and computational medicine [J]‍. JCO Clinical Cancer Informatics, 2021, 5: 487‒489‍.
[24]
Henson K E, Elliss-Brookes L, Coupland V H, al et‍. Data resource profile: National cancer registration dataset in England [J]‍. International Journal of Epidemiology, 2020, 49(1): 16‒26‍.
[25]
Tuppin P, Rudant J, Constantinou P, al et‍. Value of a national administrative database to guide public decisions: From the système national d´information interrégimes de l´Assurance Maladie (SNIIRAM) to the système national des données de santé (SNDS) in France [J]‍. Revue d´epidemiologie et de sante publique, 2017, 65: 149‒167‍.
[26]
Boffa D J, Rosen J E, Mallin K, al et‍. Using the National Cancer Database for outcomes research: A review [J]‍. JAMA Oncology, 2017, 3(12): 1722‒1728‍.
[27]
Colicchio T K, Cimino J J, Del Fiol G‍. Unintended consequences of nationwide electronic health record adoption: Challenges and opportunities in the post-meaningful use era [J]‍. Journal of Medical Internet Research, 2019, 21(6): e13313‍.
[28]
杨丽 , 王婷 , 敖敏 , 等‍ . 肺结节与肺癌全程智能管理云平台的构建及临床应用 [J]‍. 中华肺部疾病杂志 电子版, 2022 , 15 1 : 11 ‒ 14 ‍.
[29]
刘景丰 , 刘红枝 , 陈振伟 , 等‍ . 肝病和肝癌大数据平台建设体系及其初步应用 [J]‍. 中华消化外科杂志 , 2021 , 20 1 : 46 ‒ 51 ‍.
[30]
袁骏毅 , 张琛 , 潘常青 , 等‍ . 肺癌早筛管理平台设计与实现 [J]‍. 医学信息学杂志 , 2020 , 41 7 : 75 ‒ 79 ‍.
[31]
Coroller T P, Agrawal V, Huynh E, al et‍. Radiomic-based pathological response prediction from primary tumors and lymph nodes in NSCLC [J]‍. Journal of Thoracic Oncology, 2017, 12(3): 467‒476‍.
[32]
Krafft S P, Rao A, Stingo F, al et‍. The utility of quantitative CT radiomics features for improved prediction of radiation pneumonitis [J]‍. Medical Physics, 2018, 45(11): 5317‒5324‍.
[33]
Coudray N, Ocampo P S, Sakellaropoulos T, al et‍. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning [J]‍. Nature Medicine, 2018, 24(10): 1559‒1567‍.
[34]
Christie J R, Lang P, Zelko L M, al et‍. Artificial intelligence in lung cancer: Bridging the gap between computational power and clinical decision-making [J]‍. Canadian Association of Radiologists Journal, 2021, 72(1): 86‒97‍.
[35]
国家卫生健康委统计信息中心‍ . 2021年11月底全国医疗卫生机构数 [R]‍. 北京 : 国家卫生健康委统计信息中心 , 2021 ‍.
[36]
中国医院协会信息专业委员会‍ . 2019—2020年度中国医院信息化状况调查报告 [R]‍. 北京 : 中国医院协会信息专业委员会 , 2021 ‍.
[37]
Ross J S, M‍ Krumholz H. Ushering in a new era of open science through data sharing: The wall must come down [J]‍. Jama, 2013, 309(13): 1355‒1356‍.
[38]
Taichman D B, Sahni P, Pinborg A, al et‍. Data sharing statements for clinical trials: A requirement of the International Committee of medical journal editors [J]‍. Annals of Internal medicine, 2017, 167(1): 63‒65‍.
[39]
詹启敏 , 董尔丹‍ . 健康医疗人工智能指数报告2020 [M]‍. 北京 : 科学出版社 , 2021 ‍.
[40]
Naik A, Edla D R, Dharavath R‍. A deep feature concatenation approach for lung nodule classification [R]‍. Switzerland: Proceedings of the International Conference on Machine Learning and Big Data Analytics, 2021: 213‒226‍.
[41]
Overhage J M, Ryan P B, Reich C G, al et‍. Validation of a common data model for active safety surveillance research [J]‍. Journal of the American Medical Informatics Association, 2012, 19(1): 54‒60‍.
[42]
王安然 , 吴思竹 , 钱庆‍ . 面向标准化数据整合的医学通用数据模型探析 [J]‍. 中华医学图书情报杂志 , 2019 , 27 11 : 4 ‒ 15 ‍.
[43]
Weiskopf N G, Weng C‍. Methods and dimensions of electronic health record data quality assessment: Enabling reuse for clinical research [J]‍. Journal of the American Medical Informatics Association, 2013, 20(1): 144‒151‍.
[44]
Estiri H, Stephens K A, Klann J G, al et‍. Exploring completeness in clinical data research networks with DQe-c [J]‍. Journal of the American Medical Informatics Association, 2018, 25(1): 17‒24‍.
[45]
Bonner S, McGough A S, Kureshi I, al et‍. Data quality assessment and anomaly detection via map/reduce and linked data: A case study in the medical domain [C]‍. Santa Clara: Proceedings of the 2015 IEEE International Conference on Big Data, 2015‍.
[46]
Zheng R S, Zhang S W, Zeng H M, al et‍. Cancer incidence and mortality in China, 2016 [J]‍. Journal of the National Cancer Center, 2022, 2(1): 1‒9‍.
基金
国家自然科学基金项目(72125009)
PDF(4023 KB)

Accesses

Citation

Detail

段落导航
相关文章

/