气候协同的区域空气质量精细化调控战略研究

吴志军, 王志立, 张强, 陆克定, 李歆, 胡建林, 郭松, 邢佳, 同丹, 王德英, 胡京南, 雷宇, 王书肖, 龚山陵, 胡敏, 张小曳, 贺克斌, 张远航

中国工程科学 ›› 2022, Vol. 24 ›› Issue (6) : 164-172.

PDF(4965 KB)
PDF(4965 KB)
中国工程科学 ›› 2022, Vol. 24 ›› Issue (6) : 164-172. DOI: 10.15302/J-SSCAE-2022.06.015
工程管理
Orginal Article

气候协同的区域空气质量精细化调控战略研究

作者信息 +

Strategical Research on Refined Regulations for Regional Air Quality with Climate Synergy

Author information +
History +

摘要

开展气候协同的区域空气质量精细化调控研究,对推进我国空气质量持续改善、构建未来气候背景下多污染物协同减排路径、实现绿色可持续发展具有重大战略意义。本文分析了区域大气污染演变规律、多污染物相互作用机制、污染防治策略与控制技术成效,完成了多视角剖析与多技术相互印证的集成研究,阐明了多污染物非线性响应关系,并梳理形成了区域精细化调控技术体系;在探讨气候变化与大气污染相互影响的基础上,提炼了空气质量精细化调控技术路线,提出了中长期空气质量改善策略和路线图。研究建议,针对当前的大气复合污染特征,PM2.5与O3协同控制的核心在于大气氧化性调控,需要持续强化一次污染物减排,同时因时因地并结合气候气象条件开展VOCs和NOx协同的精细化减排;发挥“双碳”政策的推动作用,通过四大结构调整和低碳转型,实现多类型污染物的协同深度减排,达到PM2.5与O3浓度的同步下降。

Abstract

Strategical research on the refined regulations for regional air quality with climate synergy is essential for continuously improving the air quality, creating a coordinated multi-pollutants reduction path, and promoting sustainable development in China.This study analyzed the evolution characteristics of regional air pollution, the multi-pollutant interaction mechanisms, and the effectiveness of air pollution prevention and control strategies and technologies. Multi-perspective analysis and integrated research were conducted to clarify the non-linear relationship among multiple pollutants and formulate a technology system for refined regional regulation. The interaction between climate change and air pollution was explored as well. By summarizing the current technical routes for air pollution and control, the medium- and long-term air quality improvement strategies and roadmaps were proposed. Considering the current situation of air pollution in China, the regulation on atmospheric oxidation is the core for the coordinated control of PM2.5 and O3 pollution. Therefore, it is necessary to continuously promote emission reduction of primary pollutants and conduct refined and coordinated reduction of VOCs and NOx emissions considering specific climate and meteorological conditions. Additionally, coordinated emission reduction of multiple types of pollutants can be realized through adjustment of energy,transportation, industry, and landuse structures as well as low-carbon transformation, thereby synchronously reducing the PM2.5 and O3 concentrations.

关键词

大气污染 / PM2.5 / 臭氧 / 气候变化 / 空气质量改善

Keywords

air pollution / fine particulate matter / ozone / climate change / air quality improvement

引用本文

导出引用
吴志军, 王志立, 张强. 气候协同的区域空气质量精细化调控战略研究. 中国工程科学. 2022, 24(6): 164-172 https://doi.org/10.15302/J-SSCAE-2022.06.015

参考文献

[1]
Zhang X Y, Zhong J T, Wang J Z, et al. The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming [J]. Atmospheric Chemistry and Physics, 2018, 18(8): 5991‒5999.
[2]
中华人民共和国生态环境部‍ . 2015中国环境状况公报 [EBOL]‍. 2016-06-01 [ 2022-09-14 ]. https:www‍.mee‍.gov‍.cnhjzlsthjzkzghjzkgb201606P020160602333160471955‍.pdf .
[3]
中华人民共和国生态环境部‍‍. 2020中国生态环境状况公 报 [EBO L]‍. 2021-05- 26 [2022-09-14 ]. https:www‍.mee‍.gov‍.cnhjzlsthjzkzghjzkgb202105P020210526572756184785‍.pd f.
[4]
Li Z J, Sun Y L, Wang Q Q, al et‍. Nitrate and secondary organic aerosol dominated particle light extinction in Beijing due to clean air action [J]‍. Atmospheric Environment, 2022, 269: 118833‍.
[5]
Lu X, Zhang L, Wang X L, al et‍. Rapid increases in warm-season surface ozone and resulting health Impact in China since 2013 [J]‍. Environmental Science & Technology Letters, 2020, 7(4): 240‒247‍.
[6]
Chu B W, Ma Q, Liu J, al et‍. Air pollutant correlations in China: Secondary air pollutant responses to NOx and SO2 control [J]‍. Environmental Science & Technology Letters, 2020, 7(10): 695‒700‍.
[7]
裘彦挺 , 吴志军 , 尚冬杰 , 等‍ . 我国城市大气PM 2‍.5 与O 3 浓度相关性的时空特征分析 [J]‍. 科学通报 , 2022 , 67 : 1 ‒ 10 ‍.
[8]
Lu K D, Guo S, Tan Z F, al et‍. Exploring atmospheric free-radical chemistry in China: The self-cleansing capacity and the formation of secondary air pollution [J]‍. National Science Review, 2019, 6(3): 579‒594‍.
[9]
Lu K D, Funchs H, Hofzumahaus A, al et‍. Fast photochemistry in wintertime haze: Consequences for pollution mitigation strategies [J]‍. Environmental Science & Technology, 2019, 53(18): 10676‒10684‍.
[10]
Li J T, An X, Cui M M, al et‍. Simulation study on regional atmospheric oxidation capacity and precursor sensitivity [J]‍. Atmospheric Environment, 2021, 263: 1‒12‍.
[11]
Peng X, Wang T, Wang W H, al et‍. Photodissociation of particulate nitrate as a source of daytime tropospheric Cl2 [J]‍. Nature Communications, 2022, 13(1): 939‍.
[12]
Cheng Y F, Zheng G J, Wei C, al et‍. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China [J]‍. Science Advances, 2016, 2(12): 1‒12‍.
[13]
Wang W G, Liu M Y, Wang T T, al et‍. Sulfate formation is dominated by manganese-catalyzed oxidation of SO2 on aerosol surfaces during haze events [J]‍. Nature Communications, 2021, 12(1): 1993‍.
[14]
Zhang X Y, Xu X D, Ding Y H, al et‍. The impact of meteorological changes from 2013 to 2017 on PM2‍.5 mass reduction in key regions in China [J]‍. Science China-Earth Sciences, 2019, 62(12): 1885‒1902‍.
[15]
张小曳 , 徐祥德 , 丁一汇 , 等‍ . 2013—2017年气象条件变化对中国重点地区PM 2‍.5 质量浓度下降的影响 [J]‍. 中国科学: 地球科学 , 2020 , 50 4 : 483 ‒ 500 ‍.
[16]
Wang L L, Liu J K, Gao Z Q, al et‍. Vertical observations of the atmospheric boundary layer structure over Beijing urban area during air pollution episodes [J]‍. Atmospheric Chemistry and Physics, 2019, 19(10): 6949‒6967‍.
[17]
Wang Z L, Wang C, Yang S, al et‍. Evaluation of surface solar radiation trends over China since the 1960s in the CMIP6 models and potential impact of aerosol emissions [J]‍. Atmospheric Research, 2019, 268: 1‒12‍.
[18]
Wang Z L, Lin L, Xu Y Y, al et‍. Incorrect Asian aerosols affecting the attribution and projection of regional climate change in CMIP6 models [J]‍. npj Climate and Atmospheric Science, 2021, 4(1): 2‍.
[19]
Lin L, Wang Z L, Xu Y Y, al et‍. Sensitivity of precipitation extremes to radiative forcing of greenhouse gases and aerosols [J]‍. Geophysics Research Letters, 2016, 43(18): 9860‒9868‍.
[20]
Lin L, Wang Z L, Xu Y Y, al et‍. Larger sensitivities of precipitation extremes in response to aerosol than greenhouse gas forcing in CMIP5 models [J]‍. Journal of Geophysical Research: Atmosphere, 2018, 123(15): 8062‒8073‍.
[21]
Wang Z L, Lin L, Yang M L, al et‍. The effect of future reduction in aerosol emissions on climate extremes in China [J]‍. Climate Dynamics, 2016, 47(9-10): 2885‒2899‍.
[22]
Zhang Q, Zheng Y X, Tong D, al et‍. Drivers of improved PM2‍.5 air quality in China from 2013 to 2017 [J]‍. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(49): 24463‒24469‍.
[23]
Ding D, Xing J, Wang S X, al et‍. Optimization of a NOx and VOC cooperative control strategy based on clean air benefits [J]‍. Environmental Science & Technology, 2022, 56(2): 739‒749‍.
[24]
Ding D, Xing J, Wang S X, al et‍. Optimization of a NOx and VOC cooperative control strategy based on clean air benefits [J]‍. Environmental Science & Technology, 2021, 56(2): 739‒749‍.
[25]
Tong D, Cheng J, Liu Y, al et‍. Dynamic projection of anthropogenic emissions in China: Methodology and 2015—2050 emission pathways under a range of socio-economic, climate policy, and pollution control scenarios [J]‍. Atmospheric Chemistry and Physics, 2020, 20(9): 5729‒5757‍.
[26]
Cheng J, Tong D, Liu Y, al et‍. Air quality and health benefits of China´s current and upcoming clean air policies [J]‍. Faraday Discussions, 2021, 226: 584‒606‍.
[27]
Cheng J, Tong D, Zhang Q, al et‍. Pathways of China´s PM2‍.5 air quality 2015—2060 in the context of carbon neutrality [J]‍. National Science Review, 2021, 8(12): 1‒11‍.
[28]
Shi X R, Zheng Y X, Lei Y, al et‍. Air quality benefits of achieving carbon neutrality in China [J]‍. Science of the Total Environment, 2021, 795: 148784‍.
基金
中国工程院咨询项目“气候协同的区域空气质量精细化调控战略研究”(2021-XZ-09)
PDF(4965 KB)

Accesses

Citation

Detail

段落导航
相关文章

/