
集成电路用高纯金属溅射靶材发展研究
Development of High-purity Metal Sputtering Targets for Integrated Circuits
高纯金属溅射靶材是集成电路用关键基础材料,实现集成电路用靶材的全面自主可控,对推动集成电路产业高质量发 展具有基础性价值。本文分析了集成电路用高纯金属溅射靶材的应用需求,梳理了相应高纯金属溅射靶材的研制现状,涵盖 高纯铝及铝合金、高纯铜及铜合金、高纯钛、高纯钽、高纯钴和镍铂、高纯钨及钨合金等细分类别。在凝练我国高端靶材制 备关键技术及工程化方面存在问题的基础上,着眼领域2030年发展目标,提出了集成电路用高纯金属溅射靶材产业的重点 发展方向:提升材料制备技术水平,攻克高性能靶材制备关键技术,把握前沿需求开发高端新材料,提升材料分析检测和应 用评价能力。研究建议,开展“产学研用”体系建设,解决关键设备国产化问题,加强人才队伍建设力度,掌握自主知识产 权体系,拓展国际合作交流,以此提升高纯金属溅射靶材的发展质量和水平。
High-purity metal sputtering target is one of the key basic materials for integrated circuits. Self-dependence of the sputtering targets is vital for the high-quality development of the integrated circuit industry in China. This study analyzes the application demand for and development status of high-purity metal sputtering targets for integrated circuits, involving high-purity aluminum and aluminum alloys, high-purity copper and copper alloys, high-purity titanium, high-purity tantalum, high-purity cobalt, high-purity nickel platinum, and high-purity tungsten and tungsten alloys. Moreover, it summarizes the challenges regarding the key manufacturing technologies and engineering application of high-performance sputtering targets in China and proposes several major development directions based on the development goals of the field by 2030. Specifically, China needs to improve its material processing technologies, focus on the key technologies for high-performance target processing, develop high-end new materials according to frontier demands, and improve the capabilities of material analysis, testing, and application evaluation. Furthermore, the following suggestions are proposed: establishing an industry-education-research-application system, realizing the domestic manufacturing of key equipment, strengthening talent team construction, establishing an independent intellectual property system, and expanding international exchange and cooperation,thereby promoting the development quality and level of high-purity metal sputtering targets.
high-purity metal / sputtering target / integrated circuit / thin film / metallization
[1] |
"先进半导体材料及辅助材料"编写组 . 中国先进半导体材料及辅助材料发展战略研究 [J]. 中国工程科学 , 2022 , 22 5 : 10 ‒ 19 .
|
[2] |
吴汉明 , 吴关平 , 吴金刚 , 等 . 纳米集成电路大生产中新工艺技术现状及发展趋势 [J]. 中国科学: 信息科学 , 2012 , 42 12 : 1509 ‒ 1528 .
|
[3] |
卜伟海 , 夏志良 , 赵治国 , 等 . 后摩尔时代集成电路产业技术的发展趋势 [J]. 前瞻科技 , 2022 , 1 3 : 20 ‒ 41
|
[4] |
M Rossnagel S. Sputter deposition for semiconductor manufacturing [J]. IBM Journal of Research and Development, 1999, 43(1‒2): 163‒179.
|
[5] |
冯黎 , 朱雷 . 中国集成电路材料产业发展现状分析 [J]. 功能材料与器件学报 , 2020 , 26 3 : 191 ‒ 196 .
|
[6] |
Sarkar J. Sputtering materials for VLSI thin film devices [M]. Norwich: William Andrew Publishing, 2014.
|
[7] |
田民波 . 薄膜材料与薄膜技术 [M]. 北京 : 清华大学出版社 , 2006 .
|
[8] |
何金江 , 贺昕 , 熊晓东 , 等 . 集成电路用高纯金属材料及高性能溅射靶材制备研究进展 [J]. 新材料产业 , 2015 , 17 9 : 47 ‒ 52 .
|
[9] |
刘文迪 . 集成电路用钨溅射靶材制备技术的研究进展 [J]. 中国钨业 , 2020 , 35 1 : 36 ‒ 41
|
[10] |
Bourzac K. Cobalt could untangle chips´ wiring problems chip makers are replacing some copper connections [J]. IEEE Spectrrum, 2018, 55(2): 12‒13.
|
[11] |
Nogami T, Zhang X, Kelly J, al et. Comparison of key fine-line BEOL metallization schemes for beyond 7 nm node [C]. Hsinchu: 2017 Symposium on VLSI Technology, 2017.
|
[12] |
李亚强 , 马晓川 , 张锦秋 , 等 . 芯片制程中金属互连工艺及其相关理论研究进展 [J]. 表面技术 , 2021 , 50 7 : 24 ‒ 43 .
|
[13] |
屠海令 , 王磊 , 杜军 . 半导体集成电路用金属硅化物的制备与检测评价 [J]. 稀有金属 , 2009 , 33 4 : 453 ‒ 461 .
|
[14] |
中国半导体行业协会半导体支撑业分会 , 集成电路材料产业技术创新联盟 . 中国半导体支撑业发展状况报告2022年编 [R]. 北京 : 中国半导体行业协会半导体支撑业分会, 集成电路材料产业技术创新联盟 , 2022 .
|
[15] |
中华人民共和国工业和信息化部 . 2021年电子信息制造业运行情况 [EBOL]. 2022-01-28 [ 2022-08-15 ]. https:www.miit.gov.cngxsjtjfxdzxxart2022art_0997d192aa6f46fa8d76549f20b4e5d6.html .
|
[16] |
张卫刚 , 李媛媛 , 孙旭东 , 等 . 半导体芯片行业用金属溅射靶材市场分析 [J]. 世界有色金属 , 2018 , 12 10 : 1 ‒ 3 .
|
[17] |
Bian Y J, Cha M Y, Chen L, al et. Correlation between the formation of particle defects on sputtered Cu seed layers and Cu targets [J]. Micro & Nano Letters, 2019, 14(10): 1079‒1082.
|
[18] |
陈林 , 黄峰 . 一种半导体器件及其制造方法 : 201611075036 [P]. 2018-06-05 .
|
[19] |
Luo J F, Fang Y Y, Xu G J, al et. Development of ferromagnetic sputtering targets with high performance [J]. Materials Science Forum, 2020, 930: 820‒825.
|
[20] |
Boydens F, Leroy W P, Persoons R, al et. The influence of target surface morphology on the deposition flux during direct-current magnetron sputtering [J]. Thin Solid Films, 2013, 531: 32‒41.
|
[21] |
干勇 , 彭苏萍 , 毛景文 , 等 . 我国关键矿产及其材料产业供应链高质量发展战略研 [J]. 中国工程科学 , 2022 , 24 3 : 1 ‒ 9 .
|
/
〈 |
|
〉 |