
PNT体系视角下卫星导航与不依赖卫星导航技术融合发展研究
郭树人, 姜坤, 李星, 刘刚, 李平, 李林泽, 郭思远
中国工程科学 ›› 2023, Vol. 25 ›› Issue (2) : 50-58.
PNT体系视角下卫星导航与不依赖卫星导航技术融合发展研究
Integrated Development of Satellite and Satellite-Independent Navigation Technologies from the Perspective of PNT System
卫星导航自问世以来以其全天候、全天时、低成本的优势,成为广泛使用的导航定位授时(PNT)方式;但在应用层面,为了规避对卫星导航单一手段的过度依赖,“不依赖卫星导航技术”概念被提出并受到重视,如何准确把握两者之间的关系成为现实而迫切的问题。本文概述了卫星导航技术特征与体系定位,进而基于PNT体系视角,对比分析了惯性导航、匹配导航、无线电导航(除卫星导航外)等典型不依赖卫星导航技术的性能、成本、应用场景;辨析了卫星导航与不依赖卫星导航的关系,明晰了卫星导航作为最大共性需求满足者、体系核心与基石的总体定位,量化分析了卫星导航与不依赖卫星导航技术融合的效能。我国PNT体系的科学发展,需要创新突破不依赖卫星导航技术,促进卫星导航和不依赖卫星导航技术深度融合,同时加快低轨导航系统建设,提升卫星导航性能并最大化体系贡献率。
Satellite navigation has all-weather, all-time, and low-cost advantages and has become the most widely used means of positioning, navigation, and timing (PNT) service since its inception. However, to avoid excessive reliance on the single means of satellite navigation at the application level, the concept of satellite-independent navigation technology has been proposed and received attention. How to accurately understand the relationship between satellite and satellite-independent navigation technologies has become a realistic and urgent issue. The technological characteristics and system positioning of satellite navigation are summarized in this study. The performances, costs, and application scenarios of typical satellite independent navigation technologies such as inertial navigation, matching navigation, and radio navigation (except for satellite navigation) are comparatively analyzed from a PNT system perspective. The relationship between satellite and satellite-independent navigation technologies is comprehensively analyzed. The overall positioning of satellite navigation as the most common demand satisfied and the core and cornerstone of the PNT system is further clarified. Additionally, the fusion efficiency is quantitatively analyzed. The scientific development of China's PNT system requires the innovative development of satellite-independent navigation technologies, and the deep integration of satellite and satellite-independent navigation technologies should be promoted. Moreover, the construction of low-orbit navigation systems should be accelerated to improve satellite navigation performance and maximizing system contribution.
PNT体系 / 卫星导航 / 不依赖卫星导航 / 技术融合 / 体系发展
positioning, navigation, and timing system / satellite navigation / satellite-independent navigation / technology integration / system development
[1] |
谢军, 刘庆军, 边朗. 基于北斗系统的国家综合定位导航授时(PNT)体系发展设想 [J]. 空间电子技术, 2017, 14(5): 1‒6.
|
[2] |
李静, 龙强, 臧志斌, 等. 北斗卫星导航系统在电力行业的应用研究 [J]. 电力信息与通信技术. 2022, 20(10): 87‒97.
|
[3] |
孟俊, 王洵, 马智伟, 等. 北斗产业化赋能交通运输行业高质量发展 [J]. 卫星应用, 2021 (7): 58‒62.
|
[4] |
刘通, 李仲林, 孙长麟. 北斗卫星导航系统的应用分析 [J]. 信息与电脑, 2022, 34(7): 7‒9.
|
[5] |
唐斌, 郑冲, 章林锋, 等. 美国导航战新进展与启示 [J]. 导航定位与授时, 2020, 7(4): 110‒116.
|
[6] |
李冀. 国外提升卫星信号在拒止环境下导航定位能力的新技术 [J]. 导航定位学报, 2013, 1(2): 55‒59.
|
[7] |
杨元喜. 综合PNT体系及其关键技术 [J]. 测绘学报, 2016, 45(5): 505‒510.
|
[8] |
U.S. Department of Transportation. National positioning, navigation, and timing architecture implementation plan [EB/OL]. (2019-10-18)[2023-02-15].
|
[9] |
|
[10] |
National Security Space Office. National positioning navigation and timing architecture study: Final report [EB/OL]. (2008-09-10)[2023-02-15].
|
[11] |
赵利平, 席欢, 张永红, 等. 不依赖卫星的新型导航技术发展分析 [J]. 卫星应用, 2016 (5): 45‒48.
|
[12] |
Chief Information Officer, U.S. Department of Defense. Strategy for the DoD PNT enterprise [R]. Washington DC: Chief Information Officer, U.S. Department of Defense, 2018.
|
[13] |
U.S. Department of Homeland Security. Resilient positioning, navigation, and timing(PNT) reference architecture [EB/OL]. (2022-06-09)[2023-02-15].
|
[14] |
杨元喜, 李晓燕. 微PNT与综合PNT [J]. 测绘学报, 2017, 46(10): 1249‒1254.
|
[15] |
杨元喜. 弹性PNT基本框架 [J]. 测绘学报, 2018, 47(7): 893‒898.
|
[16] |
杨元喜, 杨诚, 任夏. PNT智能服务 [J]. 测绘学报, 2021, 50(8): 1006‒1012.
|
[17] |
杨长风. 中国北斗导航系统综合定位导航授时体系发展构想 [J]. 中国科技产业, 2018 (6): 32‒35.
|
[18] |
卞鸿巍, 徐江宁, 何泓洋, 等. 国家综合PNT体系弹性概念 [J]. 武汉大学学报(信息科学版), 2021, 46(9): 1265‒1272.
|
[19] |
王巍, 孟凡琛, 阚宝玺. 国家综合PNT体系下的多源自主导航系统技术 [J]. 导航与控制, 2022, 21(3): 1‒10.
|
[20] |
美国加紧研制不依赖卫星的新一代导航系统 [J]. 瞭望, 2014, 49: 7.
The United States is stepping up the development of a new generation of satellite independent navigation systems [J]. Outlook, 2014, 49: 7.
|
[21] |
Government Accountability Office. Defense navigation capabilities: DOD is developing positioning, navigation, and timing technologies to complement GPS GAO-21-320SP [EB/OL]. (2021-05-10)[2023-02-15].
|
[22] |
卢鋆, 武建峰, 袁海波, 等. 北斗三号系统时频体系设计与实现 [EB/OL]. (2021-12-09)[2022-03-22].
|
[23] |
中国卫星导航系统管理办公室. 新时代的中国北斗 [M]. 北京: 人民出版社, 2022.
China Satellite Navigation Office. China's Beidou navigation satellite system in the new era [M]. Beijing: People's Publishing House, 2022.
|
[24] |
熊超, 刘宗毅, 卢传芳, 等. 国外卫星导航系统发展现状与趋势 [J]. 导航定位学报, 2021, 9(3): 13‒19.
|
[25] |
葛悦涛, 薛连莉, 李婕敏. 美国陆军PNT能力发展趋势分析 [J]. 导航定位与授时, 2019, 6(2): 12‒18.
|
[26] |
Xona's private 'precision' GNSS satellite readies for launch [EB/OL]. (2022-05-10)[2023-02-15].
|
[27] |
王大轶, 李茂登, 黄翔宇. 航天器多源信息融合自主导航技术 [M]. 北京: 北京理工大学出版社, 2018.
|
[28] |
薛连莉, 翟峻仪, 葛悦涛. 2020年国外惯性技术发展与回顾 [J]. 导航定位与授时, 2021, 8(3): 59‒67.
|
[29] |
王巍, 邢朝洋, 冯文帅. 自主导航技术发展现状与趋势 [J]. 航空学报, 2021, 42(11): 525049.
|
[30] |
杨元喜. 导航与定位若干注记 [J]. 导航定位学报, 2015, 3(3): 1‒4.
|
[31] |
李海亭, 李伟. 陆基无线电进近着陆系统现状与展望 [J]. 现代导航, 2019, 10(6): 418‒422.
|
[32] |
陈奕宇, 吴苗, 梁益丰. 陆基长波导航定位模式优劣分析 [J]. 舰船电子工程, 2019, 39(12): 58‒60.
|
[33] |
邓中亮, 王翰华, 刘京融. 通信导航融合定位技术发展综述 [J]. 导航定位与授时, 2022, 9(2): 15‒25.
|
[34] |
姜坤, 焦文海, 郝晓龙, 等. 脉冲星试验01星科学试验与成果 [J]. 航空学报, 2023, 44(3): 526611.
|
[35] |
吴德伟, 苗强, 何思璇, 等. 量子传感的导航应用研究现状与展望 [J]. 空军工程大学学报, 2021, 22(6): 67‒76.
|
[36] |
胡小平, 毛军, 范晨, 等. 仿生导航技术综述 [J]. 导航定位与授时, 2020, 7(4): 1‒10.
|
[37] |
杨文钰, 李东兵, 隋毅, 等. 2020年国外不依赖卫星的导航技术发展综述 [J]. 飞航导弹, 2021 (1): 25‒30.
|
[38] |
张帆. 捷联惯性导航与卫星导航紧组合系统关键技术研究 [D]. 哈尔滨: 哈尔滨工程大学(博士学位论文), 2021.
|
[39] |
刘家兴, 郑晋军, 聂欣. 辅助GNSS对传统和现代化信号综合接收灵敏度的改善 [C]. 南昌: 第十二届中国卫星导航年会, 2021.
|
[40] |
|
[41] |
袁洪, 陈潇, 罗瑞丹, 等. 对低轨导航系统发展趋势的思考 [J]. 导航定位与授时, 2022, 9(1): 1‒11.
|
[42] |
|
/
〈 |
|
〉 |