
中国高速列车健康监测与管理:进展及展望
Prognostics and Health Management of High-Speed Trains in China: Progress and Prospect
随着列车运营速度不断提升、配属规模及车辆种类不断扩展,加之受长交路、多物理场耦合等复杂服役环境的影响,高速列车安全保障及经济运维的要求持续提高;高速列车健康监测与管理技术的研究与应用,为中国高速铁路的长距离、大规模、高密度运营提供了关键支撑。本文阐述了健康监测与管理对高速列车的重要价值,回顾了近20年中国高速列车健康监测与管理的发展历程:从安全监控到关键系统健康监测,再到一体化、全寿命周期的运维管理;总结了列车全方位状态监测、精准评估与诊断预测、车辆远程运维服务、智能运维决策支持等方面的重大技术突破。进一步展望了广域全过程适应性、列车数据 / 计算资源一体化管理与应用、基于健康监测与管理的列车设计、车 – 线 – 站一体化智能运维等未来发展方向,以期应对中国高速铁路面临的高效安全运维、深度降本降耗等发展挑战,推动中国高速列车技术持续领先。
Higher requirements have been imposed for the safety and economical operation and maintenance (O&M) of high-speed trains as a result of increasing operating speed, number of train sets in service, and vehicle types as well as complex service conditions such as long routing and multi-physics coupling. The research and application of prognostics and health management (PHM) technology in the field of high-speed trains provides important technical support for the steady operation of China's high-speed trains over long distance, on large scale, and in high density. This study presents the significance of PHM for high-speed trains and reviews the development process of high-speed train PHM in China, which has evolved from the initial safety monitoring to breakthroughs in health monitoring technologies of key systems and then the current integrated lifecycle O&M management in the past two decades. It further summarizes the major technical breakthroughs in four aspects, namely, comprehensive train condition monitoring, accurate assessment and diagnosis prediction, vehicle remote O&M services, and intelligent O&M decision support. In the face of the future challenges of efficient and safe O&M, substantial cost reduction, and consumption reduction of China's high-speed trains, suggestions are proposed in the following aspects: wide-area and entire-process adaptability, centralized management and application of train data and computing resources, train design based on PHM, and train–line–station integrated intelligent O&M, so as to promote China's high-speed train technology to maintain a lead.
高速列车 / 健康监测与管理 / 故障诊断预测 / 智能运维 / 车 – 线 – 站一体化
high-speed train / prognostics and health management / fault diagnosis and prediction / intelligent operation and management / train–line–station integration
[1] |
|
[2] |
裴大茗, 王建峰, 周鹏太, 等. 船舶PHM技术综述 [J]. 电子测量与仪器学报, 2016, 30(9): 1289‒1297.
|
[3] |
王军. 面向PHM的高速列车谱系化产品技术平台开发和实践 [J]. 中国铁道科学, 2021, 42(1): 80‒86.
|
[4] |
黄学文, 刘春明, 冯璨, 等. CRH3高速动车组故障诊断系统 [J]. 计算机集成制造系统, 2010, 16(10): 2311‒2318.
|
[5] |
王后闯, 曾陆洋, 郝国梁, 等. 铁路客车故障预测与健康管理(PHM)系统 [J]. 铁道机车车辆, 2022, 42(2): 94‒98.
|
[6] |
刘彬, 邵军, 陆航, 等. 动车组故障预测与健康管理(PHM)体系架构研究思考 [J]. 中国铁路, 2022 (3): 1‒9.
|
[7] |
王军, 马云双. 中国高速动车组发展模式探索与实践 [M]. 北京: 中国铁道出版社, 2020.
|
[8] |
申瑞源. 机车车载安全防护系统(6A系统)总体方案研究 [J]. 中国铁路, 2012 (12): 1‒6.
|
[9] |
刘峰, 申宇燕, 张瑞芳, 等. 机车车载安全防护系统应用研究 [J]. 铁路技术创新, 2015 (2): 17‒21.
|
[10] |
张志波, 张振先, 冯永华, 等. 高速动车组转向架综合智能检测技术研究 [J]. 铁道车辆, 2021, 59(6): 40‒44.
|
[11] |
高速铁路供电安全检测监测系统( 6C系统)总体技术规范 [EB/OL]. (2022-04-06)[2023-02-15].
General technical specification for high-speed railway power supply safety detection and monitoring system( 6C system) [EB/OL]. (2022-04-06)[2023-02-15].
|
[12] |
彭文静. 车载远程数据传输设备在高速动车组上的应用 [J]. 铁道车辆, 2013, 51(10): 29‒30.
|
[13] |
朱彦, 尹振坤, 张国芹, 等. 复兴号动车组智能技术创新应用及展望 [J]. 城市轨道交通研究, 2022, 25(2): 1‒4.
|
[14] |
王同军. 智能铁路总体架构与发展展望 [J]. 铁路计算机应用, 2018, 27(7): 1‒8.
|
[15] |
王同军. 中国铁路大数据应用顶层设计研究与实践 [J]. 中国铁路, 2017 (1): 8‒16.
|
[16] |
常振臣, 逯骁, 张海峰. 轨道交通车辆大数据管理平台建设与实施 [J]. 城市轨道交通研究, 2019, 22(2): 1‒4.
|
[17] |
秦勇, 马慧, 贾利民. 先进轨道交通系统发展趋势与主动安全保障技术 [J]. 中国铁路, 2015 (12): 77‒81.
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
彭云聪, 秦小林, 张力戈, 等. 面向图像分类的小样本学习算法综述 [J]. 计算机科学, 2022, 49(5): 1‒9.
|
[26] |
|
[27] |
|
[28] |
|
[29] |
郑跃滨, 武湛君, 雷振坤, 等. 基于超声导波的航空航天结构损伤诊断成像技术研究进展 [J]. 航空制造技术, 2020, 63(18): 24‒43.
|
[30] |
|
[31] |
|
[32] |
|
[33] |
于萍, 金炜东, 秦娜. 基于EEMD 降噪和流形学习的高速列车走行部故障特征提取 [J]. 铁道学报, 2016, 38(4): 16‒21.
|
[34] |
贺德强, 陈二恒, 李笑梅, 等. 基于RS-LSSVM 的高速列车走行部滚动轴承故障诊断研究 [J]. 广西大学学报(自然科学版), 2017, 42(2): 403‒408.
|
[35] |
梁建英, 邓学寿, 刘韶庆, 等. 基于大数据技术的动车组数字化智能运维平台 [R]. 青岛: 中车青岛四方机车车辆股份有限公司, 2020.
|
/
〈 |
|
〉 |