
海洋可再生能源装备技术发展研究
Development of Marine Renewable Energy Equipment and Technologies
海洋可再生能源具有绿色清洁、可再生等优势,在助力海洋领域“碳减排”方面扮演重要角色。海洋可再生能源装备技术是支撑海洋可再生能源高效开发利用的重要抓手。本文梳理了国内外海洋可再生能源装备技术的发展现状,分析了国际海洋可再生能源装备技术发展趋势,总结了我国海洋可再生能源装备技术发展存在的问题,分析认为我国各类海洋可再生能源装备技术发展水平参差不齐,多能互补的综合利用探索不足,在装备技术的可靠性、运行维护等方面与国际先进水平仍有差距,建议通过建立支撑海洋可再生能源装备技术可持续创新发展的中长期规划,加快突破海洋可再生能源装备核心技术,加快探索海洋可再生能源装备技术多能互补综合开发的应用场景,多措并举吸引更多资本、加快产业化发展等措施,实现提高海洋可再生能源装备技术可靠性、降低商业发电成本、安全环保等发展目标。
Marine renewable energy (MRE) has the advantages of being green, clean, and renewable, and plays an important role in reducing carbon emissions in the marine sector. MRE equipment and technologies are crucial for the efficient development and utilization of MRE. This study introduces the development status of MRE equipment and technologies in China and abroad, analyzes the international development trend of MRE equipment and technologies, and examines the problems existing in the development of MRE equipment and technologies in China. Specifically, the development levels of different types of MRE equipment and technologies are uneven, the comprehensive utilization of multiple energy resources is inadequate, and China still lags behind the advanced international level regarding the reliability, operation, and maintenance of the MRE equipment and technologies. To improve equipment reliability, reduce power generation costs, and ensure safety and environmental protection, we suggest that China should formulate a medium- and long-term plan that supports the sustainable and innovative development of MRE equipment and technologies, develop core technologies of MRE equipment, explore application scenarios for the integrated development of multiple energy resources, and attract more investment to accelerate industrial development.
海洋可再生能源 / 装备技术 / 应用场景 / 产业需求 / 综合开发
marine renewable energy / equipment technology / application scenarios / industrial demand / comprehensive development
[1] |
刘伟民 , 刘蕾 , 陈凤云 , 等 . 中国海洋可再生能源技术进展 [J]. 科技导报 , 2020 , 38 14 : 27 .
|
[2] |
夏登文 , 康健 . 海洋能开发利用词典 [M]. 北京 : 海洋出版社 , 2014 .
|
[3] |
International Renewable Energy Agency. Fostering a blue economy: Offshore renewable energy [R]. Bonn: International Renewable Energy Agency, 2020.
|
[4] |
于华明 . 海洋可再生能源发展现状与展望 [M]. 青岛 : 中国海洋大学出版社 , 2012 .
|
[5] |
高艳波 , 柴玉萍 , 李慧清 , 等 . 海洋可再生能源技术发展现状及对策建议 [J]. 可再生能源 , 2011 , 29 2 : 152 ‒ 156 .
|
[6] |
姜勇 , 赵喜喜 , 田敬云 , 等 . 我国海洋可再生能源产业技术发展现状以及山东省未来发展思路 [J]. 海洋开发与管理 , 2015 , 32 9 : 32 .
|
[7] |
REN21. Renewables 2022 global status report [R]. New York: REN21, 2022.
|
[8] |
GWEC. Global offshore wind report 2022 [R]. Sao Paulo: GWEC, 2022.
|
[9] |
Orsted. Hornsea three offshore community newsletter [EB/OL]. (2022-11)[2022-12-18]. https://orstedcdn.azureedge.net/-/media/www/docs/corp/uk/hornsea-project-three/hornsea-three-community-newsletter---november-2022.ashx?rev=15b767deff3c4ab1a1f3069a40407373&hash=E79521F1B06D984380830469A94DD5AD.
|
[10] |
European Union´s Horizon. Advanced design tools for ocean energy systems innovation, development and deployment [R]. Derio: European Union´s Horizon, 2020.
|
[11] |
Guo B, V Ringwood J. A review of wave energy technology from a research and commercial perspective [J]. IET Renewable Power Generation, 2021, 15: 3065‒3090.
|
[12] |
Commission European. The EU blue economy report 2022 [R]. Brussels: European Commission, 2022.
|
[13] |
Simec Atlantis Energy. Tidal stream projects meygen [EB/OL]. (2022-12-27)[2023-02-21]. https://saerenewables.com/tidal-stream/meygen/.
|
[14] |
Minesto. Minesto´s tidal array buildout progressing on schedule [EB/OL]. (2022-10-05)[2022-12-27]. https://minesto.com/news-media/minesto%E2%80%99s-tidal-array-buildout-progressing-schedule.
|
[15] |
彭爱武 . 海洋能发电与综合利用前景与展望 [R]. 北京 : 中国科学院老科学技术工作者协会 , 2021 .
|
[16] |
The Liverpool City Region Combined Authority. New step forward on mersey tidal power project [EB/OL].(2022-03-28)[2023-03-25]. https://www.liverpoolcityregion-ca.gov.uk/new-step-forward-on-mersey-tidal-power-project/.
|
[17] |
陈永平 . 海洋温差能利用技术进展 [R]. 深圳 : 中国海洋经济博览会 , 2022 .
|
[18] |
IEA-Ocean Energy System. White paper on Ocean Thermal Energy Conversion (OTEC) [R]. Paris: IEA-Ocean Energy System, 2021.
|
[19] |
International Renewable Energy Agency. Salinity gradient energy technology brief [R]. Paris: International Energy Agency, 2014.
|
[20] |
张仂 , 孟兴智 , 潘文琦 . 盐差能利用趋势 [J]. 盐科学与化工 , 2021 , 50 4 : 1 ‒ 3 .
|
[21] |
IEA-Ocean Energy System. Annual Report: An Overview of Ocean Energy Activities in 2021 [R]. Paris: IEA-Ocean Energy System, 2022.
|
[22] |
J Slater N.DNV verifies Sungrow FPV´s Anchoring and Mooring design methodology using new Floating Solar Recommended Practice [EB/OL]. (2021-10-08) [2023-03-02]. https://www.dnv.com/news/dnv-verifies-sungrow-fpv-s-anchoring-and-mooring-design-methodology-using-new-floating-solar-recommended-practice-208492.
|
[23] |
谢嘉 , 桑成松 , 马勇 , 等 . 新能源供电多能互补发电系统设计 [J]. 南京理工大学学报 , 2020 , 44 4 : 501 .
|
[24] |
王世明 , 李泽宇 , 于涛 , 等 . 多能互补海洋能集成发电技术研究综述 [J]. 海洋通报 , 2019 , 38 3 : 241 ‒ 249 .
|
[25] |
李伟 , 杨易嘉 , 顾亚京 , 等 . 基于海洋能的海水资源综合利用研究 [J]. 中国工程科学 , 2019 , 21 6 : 33 ‒ 38 .
|
[26] |
Ocean Energy System IEA. Ocean energy in Islands and remote coastal areas: Opportunities and challenges [R]. Paris: IEA, 2020.
|
[27] |
European Marine Board. European offshore renewable energy: Towards a sustainable future [R]. Ostend: European Marine Board, 2023.
|
[28] |
Commission European. Ocean energy technology development report 2018 [R]. Brussels: European Commission, 2019.
|
[29] |
International Renewable Energy Agency. Offshore renewables: An action agenda for deployment [R]. Bonn: International Renewable Energy Agency, 2021.
|
[30] |
Bellini E. Floating solar plant with LCOE of $0.051/kWh comes online in Malaysia [EB/OL].(2020-10-21)[2023-05-03]. https://www.pv-magazine.com/2020/10/21/floating-solar-plantwith-lcoe-of-0-038-kwh-comes-online-in-malaysia.
|
[31] |
秦海岩 . 我国海上风电发展回顾与展望 [J]. 海洋经济 , 2022 , 12 2 : 50 ‒ 58 .
|
[32] |
Global Wind Energy Council. Global offshore wind report 2022 [R]. Sao Paulo: Global Wind Energy Council, 2022.
|
[33] |
三峡能源 . 三峡集团江苏区域多个海上风电项目全容量并网, 创多项"之最" [EBOL]. 2021-12-25 [ 2023-03-12 ]. https:www.ctgne.comsxxnychina107776110776611266459index.html .
|
[34] |
王富强 , 郝军刚 , 李帅 , 等 . 漂浮式海上风电关键技术与发展趋势 [J]. 水力发电 , 2022 , 48 10 : 9 ‒ 12, 117 .
|
[35] |
彭伟 , 王芳 , 王冀 . 我国海洋可再生能源开发利用现状及发展建议 [J]. 海洋经济 , 2022 , 12 3 : 70 ‒ 75 .
|
[36] |
广州能源所成功研建首台半潜式波浪能养殖平台"澎湖号" [EBOL]. 2019-07-03 [ 2023-01-12 ]. https:www.giec.cas.cnttxw2016201907t20190703_5332070.html .
|
[37] |
中国南方电网有限责任公司 . 世界首台MW级漂浮式波浪能发电装置下水调试 [EBOL]. 2023-01-12 [ 2023-01-12 ]. http:www.sasac.gov.cnn2588025n2588124c26962133content.html .
|
[38] |
张亚群 , 盛松伟 , 游亚戈 , 等 . 波浪能发电技术应用发展现状及方向 [J]. 新能源进展 , 2019 , 7 4 : 374 ‒ 378 .
|
[39] |
我市海洋科技创新成果转化实现重大突破——世界最大单机LHD 1 . 6 MW潮流能发电 [EBOL]. 2022-02-28 [ 2023-01-12 ]. http:www.93kj.cnhtmlwebkejixinxihaiyangdianzixinxi1518850950377320449.html .
|
[40] |
张继生 , 汪国辉 , 林祥峰 . 潮流能开发利用现状与关键科技问题研究综述 [J]. 河海大学学报自然科学版 , 2021 , 49 3 : 220 ‒ 232 .
|
[41] |
薛碧颖 , 陈斌 , 邹亮 . 我国海洋无碳能源调查与开发利用主要进展 [J]. 中国地质调查 , 2021 , 8 4 : 53 ‒ 65 .
|
[42] |
徐旭升 . 玉环海山潮汐电站现状及保护利用建议 [J]. 浙江水利水电学院学报 , 2022 , 34 4 : 67 ‒ 68 .
|
[43] |
付强 , 王国荣 , 周守为 , 等 . 温差能与低温海水资源综合利用研究 [J]. 中国工程科学 , 2021 , 23 6 : 52 ‒ 60 .
|
[44] |
国际船舶网 . 七〇四所MW级海洋温差能发电设计方案获CCS颁发AIP认证 [EBOL]. 2022-12-01 [ 2023-03-21 ]. https:newenergy.in-en.comhtmlnewenergy-2417209.shtml .
|
[45] |
科学家实现高效率多形式盐差能发电 [J]. 世界环境 , 2022 5 : 9 .
|
[46] |
方芳 . 海上光伏前景可期——中心助力海上光伏技术经验研讨会 [EBOL]. 2022-06-16 [ 2023-03-03 ]. http:www.notcsoa.org.cncnindexshow3622 .
|
[47] |
黄翔 . 海上光伏风生水起, 万华化学组团布局 [N]. 证券时报 , 2022-12-07 A06.
|
[48] |
董梓童 . 海上光伏迈向"深蓝" [N]. 中国能源报 , 2022-06-13 012.
|
[49] |
赵金峰 , 黄筱云 , 陈理 . 波浪能发电技术及研究现状 [J]. 湖南水利水电 , 2022 3 : 7 ‒ 11 .
|
[50] |
毛亚郎 , 陈国波 , 章怡 . 海洋能开发的多能互补装置及分布式发电系统 [J]. 海洋开发与管理 , 2016 , 33 11 : 48 ‒ 54 .
|
/
〈 |
|
〉 |