
海底地质灾害发育特征与监测技术研究现状及展望
申艳军, 彭建兵, 贾永刚, 马鹏辉, 范文, 沈伟, 田兆阳, 霍秉尧
中国工程科学 ›› 2023, Vol. 25 ›› Issue (3) : 95-108.
海底地质灾害发育特征与监测技术研究现状及展望
Research Status and Prospect of Development Characteristics and Monitoring Techniques of Submarine Geological Hazards
在“海洋强国”建设背景下我国海洋资源开发活动逐步延伸至深海,然而海底地质条件恶劣,重大海底地质灾害问题成为海洋资源开发的制约性因素,需要全面了解海底地质灾害典型发育特征与成因规律、总结典型海底地质灾害监测技术及方法。本文概述了海底地质灾害及其监测研究历程,梳理了海底地质灾害常见发育类型及特点、海底地质灾害演化机制研究现状,海底地质灾害监测技术、海底地质灾害监测网研究进展。研究认为,深化环大陆架盆地海底地质灾害评价理论与方法、加强环大陆架盆地海底地质灾害灾变机理及预测预报、开展海底地质灾害探测 / 监测方法与临兆识别研究,以此深化关键科学问题认知;构建完备的环大陆架盆地海底地质灾害数据库、形成详实的南海环大陆架海域海底资源分布及工程设施信息库、发展海底地质灾害运动演化过程可视化仿真模拟技术、构建多圈层 – 多灾种海底地质灾害协同监测体系及预警网络,以此突破关键技术瓶颈。
Against the background of strengthening the marine industry, China’s marine resource development activities have gradually extended to the deep sea. However, due to harsh geological conditions, major submarine geological hazards pose constraints on marine resource evelopment and engineering. It is necessary to comprehensively understand the typical characteristics and causallaws of submarine geological hazards and summarize the monitoring techniques and methods for typical submarine geological hazards. This study provides an overview of the research history of submarine geological hazards and their monitoring. It summarizes the common types and characteristics of submarine geological hazards, and reviews the research on the mechanisms of submarine geological hazard evolution as well as the progress in monitoring techniques and networks for submarine geological hazards. The study suggests that it is important to improve the evaluation theory and methods of submarine geological hazards in circumcontinental shelf basins, strengthen the study of disaster mechanisms and prediction for these hazards, and conduct research on detection and monitoring methods and precursory identification of submarine geological hazards to enhance our understanding of key scientific issues. Furthermore, the study emphasizes the need to establish a comprehensive database of submarine geological hazards in the circumcontinental shelf basins, create a detailed information repository of submarine resource distribution and engineering facilities in the South China Sea’s circumcontinental shelf area, develop visualization and simulation techniques for the dynamic evolution process of submarine geological hazards, and construct a multi-level and multi-hazard cooperative monitoring system and early warning network for submarine geological hazards, aiming to overcome key technological bottlenecks.
submarine geological hazards / evolution law / formation mechanism / monitoring technique
[1] |
刘朝全 , 姜学峰 , 吴谋远 . 2021年国内外油气行业发展报告 [M]. 北京 : 石油工业出版社 , 2022 .
|
[2] |
Sahal A, Lemahieu A. The 1979 nice airport tsunami: Mapping of the flood in Antibes [J]. Natural Hazards, 2011, 56(3): 833‒840.
|
[3] |
Tripsanas E K, Piper D J W, C Campbell D. Evolution and depositional structure of earthquake-induced mass movements and gravity flows: Southwest Orphan Basin, Labrador Sea [J]. Marine and Petroleum Geology, 2008, 25(7): 645‒662.
|
[4] |
Cheng C, Jiang T, Kuang Z G, al et. Seismic characteristics and distributions of quaternary mass transport deposits in the Qiongdongnan Basin, northern South China Sea [J]. Marine and Petroleum Geology, 2021, 129: 105118.
|
[5] |
Grilli S T, Zhang C, Kirby J T, al et. Modeling of the Dec. 22nd 2018 Anak Krakatau volcano lateral collapse and tsunami based on recent field surveys: Comparison with observed tsunami impact [J]. Marine Geology, 2021, 440: 106566.
|
[6] |
周杨锐 , 吴秋云 , 董明明 , 等 . 深水工程勘察技术研究现状与展望 [J]. 中国海上油气 , 2017 , 29 6 : 158 ‒ 166 .
|
[7] |
贾永刚 , 陈天 , 李培英 , 等 . 海洋地质灾害原位监测技术研究进展 [J]. 中国地质灾害与防治学报 , 2022 , 33 3 : 1 ‒ 14 .
|
[8] |
李海东 , 许江 , 郑江龙 , 等 . 广西近海灾害地质因素及声学反射特征 [J]. 应用海洋学学报 , 2016 , 35 2 : 275 ‒ 283 .
|
[9] |
俞学礼 . 海洋石油开发百年回顾 [J]. 科学 , 1999 , 51 4 : 30 ‒ 33 .
|
[10] |
钱寿易 , 杜金声 , 楼志刚 , 等 . 海洋土力学现状及发展 [J]. 力学进展 , 1980 4 : 1 ‒ 14 .
|
[11] |
潘继平 , 张大伟 , 岳来群 , 等 . 全球海洋油气勘探开发状况与发展趋势 [J]. 中国矿业 , 2006 11 : 1 ‒ 4 .
|
[12] |
郭兴森 . 海底地震滑坡易发性与滑坡—管线相互作用研究 [D]. 大连 : 大连理工大学 博士学位论文 , 2021 .
|
[13] |
叶银灿 . 海洋灾害地质学发展的历史回顾及前景展望 [J]. 海洋学研究 , 2011 , 29 4 : 1 ‒ 7 .
|
[14] |
赵广涛 , 谭肖杰 , 李德平 . 海洋地质灾害研究进展 [J]. 海洋湖沼通报 , 2011 1 : 159 ‒ 164 .
|
[15] |
刘守全 , 张明书 . 海洋地质灾害研究与减灾 [J]. 中国地质灾害与防治学报 , 1998 S1 : 163 ‒ 167 .
|
[16] |
孙启良 , 解习农 , 吴时国 . 南海北部海底滑坡的特征、灾害评估和研究展望 [J]. 地学前缘 , 2021 , 28 2 : 258 ‒ 270 .
|
[17] |
Zhang W, Liang J Q, Su P B, al et. Distribution and characteristics of mud diapirs, gas chimneys, and bottom simulating reflectors associated with hydrocarbon migration and gas hydrate accumulation in the Qiongdongnan Basin, northern slope of the South China Sea [J]. Geological Journal, 2019, 54(6): 3556‒3573.
|
[18] |
王俊勤 , 张广旭 , 陈端新 , 等 . 琼东南盆地陵水研究区海底地质灾害类型、分布和成因机制 [J]. 海洋地质与第四纪地质 , 2019 , 39 4 : 87 ‒ 95 .
|
[19] |
年廷凯 , 沈月强 , 郑德凤 , 等 . 海底滑坡链式灾害研究进展 [J]. 工程地质学报 , 2021 , 29 6 : 1657 ‒ 1675 .
|
[20] |
贾永刚 , 王振豪 , 刘晓磊 , 等 . 海底滑坡现场调查及原位观测方法研究进展 [J]. 中国海洋大学学报 自然科学版 , 2017 , 47 10 : 61 ‒ 72 .
|
[21] |
Ripmeester J A, Tse J S, Ratcliffe C I, al et. A new clathrate hydrate structure [J]. Nature, 1987, 325(6100): 135‒136.
|
[22] |
淳明浩 , 刘振纹 , 杨肖迪 , 等 . 深水三浅地质灾害的监测与预防技术研究 [C]. 舟山 : 第十八届中国海洋 岸工程学术讨论会 , 2017 .
|
[23] |
Phrampus B J, J Hornbach M. Recent changes to the gulf stream causing widespread gas hydrate destabilization [J]. Nature, 2012, 490(7421): 527‒530.
|
[24] |
马云 , 李三忠 , 梁金强 , 等 . 南海北部琼东南盆地海底滑坡特征及其成因机制 [J]. 吉林大学学报 地球科学版 , 2012 , 42 S3 : 196 ‒ 205 .
|
[25] |
彭晓彤 , 周怀阳 , 陈光谦 , 等 . 论天然气水合物与海底地质灾害、气象灾害和生物灾害的关系 [J]. 自然灾害学报 , 2002 4 : 18 ‒ 22 .
|
[26] |
朱超祁 , 张民生 , 刘晓磊 , 等 . 海底天然气水合物开采导致的地质灾害及其监测技术 [J]. 灾害学 , 2017 , 32 3 : 51 ‒ 56 .
|
[27] |
Vanneste M, Sultan N, Garziglia S, al et. Seafloor instabilities and sediment deformation processes: The need for integrated, multi-disciplinary investigations [J]. Marine Geology, 2014, 352: 183‒214.
|
[28] |
陈子归 , 姜涛 , 匡增桂 , 等 . 琼东南盆地天然气水合物与浅层气共生体系成藏特征 [J]. 地球科学 , 2022 , 47 5 : 1619 ‒ 1634 .
|
[29] |
朱超祁 , 贾永刚 , 刘晓磊 , 等 . 海底滑坡分类及成因机制研究进展 [J]. 海洋地质与第四纪地质 , 2015 , 35 6 : 153 ‒ 163 .
|
[30] |
谢金有 , 祝幼华 , 李绪深 , 等 . 南海北部大陆架莺琼盆地新生代海平面变化 [J]. 海相油气地质 , 2012 , 17 1 : 49 ‒ 58 .
|
[31] |
Kopp H, Weinzierl W, Becel A, al et. Deep structure of the central Lesser Antilles Island Arc: Relevance for the formation of continental crust [J]. Earth and Planetary Science Letters, 2011, 304(1): 121‒134.
|
[32] |
吴志强 , 张训华 , 赵维娜 , 等 . 海底节点 OBN地震勘探: 进展与成果 [J]. 地球物理学进展 , 2021 , 36 1 : 412 ‒ 424 .
|
[33] |
Hello Y, Ogé A, Sukhovich A, al et. Modern mermaids: New floats image the deep Earth [J]. Eos, 2011, 92(40): 337‒338.
|
[34] |
Sukhovich A, Bonnieux S, Hello Y, al et. Seismic monitoring in the oceans by autonomous floats [J]. Nature Communications, 2015, 6(1): 8027.
|
[35] |
Marra G, Clivati C, Luckett R, al et. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables [J]. Science, 2018, 361(6401): 486‒490.
|
[36] |
陈天 , 贾永刚 , 刘涛 , 等 . 海底沉积物孔隙压力原位长期观测技术回顾和展望 [J]. 地学前缘 , 2022 , 29 5 : 229 ‒ 245 .
|
[37] |
PrindleR W, A Lopez A. Pore pressures in marine sediments—1981 test of the geotechnically instrumented seafloor probe (GISP) [C]. Houston: Offshore Technology Conference, 1983.
|
[38] |
Schultheiss P J, McPhail S D, Packwood A R, al et. An instrument to measure differential pore pressures in deep ocean sediments: Pop-up-pore pressure instrument (PUPPI) [R]. Wormley: Institute of Oceanographic Sciences, 1985.
|
[39] |
Stegmann S, Sultan N, Garziglia S, al et. A long-term monitoring array for landslide precursors: A case study at the ligurian slope (Western Mediterranean Sea) [C]. Houston: Offshore Technology Conference, 2012.
|
[40] |
Marine geohazards: Safeguarding society and the blue economy from a hidden threat [EB/OL]. (2021-11-15)[2023-04-15]. https: //www.marineboard.eu/sites/marineboard.eu/files/public/publication/EMB_PP26_Marine_Geo_Hazards_v5_web.pdf.
|
[41] |
杜星 . 黄河口海底粉土波致孔压精细观测及液化评判方法 [D]. 青岛 : 自然资源部第一海洋研究所 硕士学位论文 , 2016 .
|
[42] |
Liu T, Li S P, Kou H L, al et. Excess pore pressure observation in marine sediment based on fiber bragg grating pressure sensor [J]. Marine Georesources & Geotechnology, 2019, 37(7): 775‒782.
|
[43] |
Stenvold T, Eiken O, Zumberge M A, al et. High-precision relative depth and subsidence mapping from seafloor water-pressure measurements [J]. SPE Journal, 2006, 11(3): 380‒389.
|
[44] |
Prior D B, Suhayda J N, Lu N Z, al et. Storm wave reactivation of a submarine landslide [J]. Nature, 1989, 341(6237): 47‒50.
|
[45] |
Fabian M, Villinger H. Long-term tilt and acceleration data from the logatchev hydrothermal vent field, Mid-Atlantic Ridge, measured by the Bremen ocean bottom tiltmeter [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7): Q07016.
|
[46] |
Blum J A, Chadwell C D, Driscoll N, al et. Assessing slope stability in the Santa Barbara Basin, California, using seafloor geodesy and CHIRP seismic data [J]. Geophysical Research Letters, 2010, 37(13): L13308.
|
[47] |
A Zumberge M. Precise optical path length measurement through an optical fiber: Application to seafloor strain monitoring [J]. Ocean Engineering, 1997, 24(6): 531‒542.
|
[48] |
L Morton J. Sea-floor horizontal deformation measurements using dual-frequency intellegent transponders [C]. Dordrecht: Proceedings International Symposium on Marine Positioning, 1994.
|
[49] |
Petersen F, Kopp H, Lange D, al et. Measuring tectonic seafloor deformation and strain-build up with acoustic direct-path ranging [J]. Journal of Geodynamics, 2019, 124: 14‒24.
|
[50] |
Wang Z H, Sun Y F, Jia Y G, al et. Wave-induced seafloor instabilities in the subaqueous Yellow River Delta—Initiation and process of sediment failure [J]. Landslides, 2020, 17(8): 1849‒1862.
|
[51] |
Sternberg R W, S Creager J. An instrument system to measure boundary-layer conditions at the sea floor [J]. Marine Geology, 1965, 3(6): 475‒482.
|
[52] |
Cacchione D A, E Drake D. A new instrument system to investigate sediment dynamics on continental shelves [J]. Marine Geology, 1979, 30(3‒4): 299‒312.
|
[53] |
Wright L D, Boon J D, Green M O, al et. Response of the mid shoreface of the southern mid-Atlantic Bight to a "northeaster" [J]. Geo-Marine Letters, 1986, 6(3): 153‒160.
|
[54] |
马小川 , 阎军 , 范奉鑫 , 等 . 北部湾南部海域近底悬沙输运及地貌演变 [J]. 海洋学报 , 2012 , 34 4 : 109 ‒ 120 .
|
[55] |
赵广涛 , 于新生 , 李欣 , 等 . Benvir: 一个深海海底边界层原位监测装置 [J]. 高技术通讯 , 2015 , 25 1 : 54 ‒ 60 .
|
[56] |
季春生 , 贾永刚 , 朱俊江 , 等 . 深海海底边界层原位观测系统研发与应用 [J]. 地学前缘 , 2022 , 29 5 : 265 ‒ 274 .
|
[57] |
Cacchione D A, Sternberg R W, S Ogston A. Bottom instrumented tripods: History, applications, and impacts [J]. Continental Shelf Research, 2006, 26(17‒18): 2319‒2334.
|
[58] |
Solomon E A, Becker K, Kopf A J, al et. Listening down the pipe [J]. Oceanography, 2019, 32(1): 98‒101.
|
[59] |
汪品先 . 从海底观察地球——地球系统的第三个观测平台 [J]. 自然杂志 , 2007 3 : 125 ‒ 130 .
|
[60] |
孙志文 , 贾永刚 , 权永峥 , 等 . 复杂深海工程地质原位长期监测系统研发与应用 [J]. 地学前缘 , 2022 , 29 5 : 216 ‒ 228 .
|
[61] |
李风华 , 路艳国 , 王海斌 , 等 . 海底观测网的研究进展与发展趋势 [J]. 中国科学院院刊 , 2019 , 34 3 : 321 ‒ 330 .
|
[62] |
李三忠 , 赵淑娟 , 刘鑫 , 等 . 洋 – 陆转换与耦合过程 [J]. 中国海洋大学学报自然科学版 , 2014 , 44 10 : 113 ‒ 133 .
|
/
〈 |
|
〉 |