
海底碳封存环境地质灾害风险及监测技术研究
Geoenvironmental Hazard Risks and Monitoring Technologies for Marine Carbon Sequestration
海底CO2地质封存是我国实现“双碳”目标的重要组成部分,但CO2泄露具有诱发海底地质灾害的风险,威胁海洋工程的安全建设,因此开展封存区环境地质监测对海洋碳封存实施具有重要的现实意义。本文在简要介绍海底CO2地质封存示范案例的基础上,阐述了海底封存区CO2泄露的致灾机制,结合实例梳理了典型CO2控释试验中的海洋环境监测技术,重点分析了与CO2泄露相关的环境地质监测技术,包括地震调查与监测、电阻率法监测技术、重力监测技术、海床变形监测技术以及沉积物孔隙压力监测技术等,展望了我国海底碳封存及其环境地质监测的未来发展前景。研究认为,今后应侧重封存区CO2泄露致灾机制与环境地质监测技术研究,建议在研发长时序、低成本并实时监测技术的基础上,结合封存区基线调查,建立和发展系统性、智能性的多维度灾害识别模型,构建多方面、多层次、多灾种的监测预警预报体系。
Marine carbon geological sequestration is crucial for achieving carbon peaking and carbon neutralization in China. However, there exist risks of carbon dioxide (CO2) leakage that leads to seabed geological disasters, severely threatening the safety of marine engineering. Therefore, it is of great practical significance to monitor the environmental geology of sequestration areas. This study briefly introduces several demonstration cases of marine carbon geological sequestration and explores the disaster mechanism associated with CO2 leakage in seabed sequestration areas. It also sorts out the marine environment monitoring technologies in typical CO2 controlled release tests via examples and analyzes the environmental geology monitoring technologies related to CO2 leakage, including seismic investigation and monitoring, resistivity monitoring, gravity monitoring, seabed deformation monitoring, and sediment pore pressure monitoring. Moreover, the prospects of China’s marine carbon geological sequestration and its environmental geology monitoring are presented. We suggest that long-time, low-cost, and real-time monitoring technologies should be developed, a systematic and intelligent multi-dimensional disaster identification model should be established in combination with the baseline investigation of the sequestration areas, and a multi-faceted, multi-level, and multi-disaster monitoring and forecasting system should be built.
海底碳封存 / 环境地质 / CO2泄露 / 灾害风险 / 监测技术
marine carbon geological sequestration / environmental geology / CO2 leakage / hazard risks / monitoring technologies
[1] |
Stainforth D A, Aina T, Christensen C, al et. Uncertainty in predictions of the climate response to rising levels of greenhouse gases [J]. Nature, 2005, 433(7024): 403‒406.
|
[2] |
M Gür T. Carbon dioxide emissions, capture, storage and utilization: Review of materials, processes and technologies [J]. Progress in Energy and Combustion Science, 2022, 89: 100965.
|
[3] |
Masuda Y, Yamanaka Y, Sasai Y. Optimization of the horizontal shape of CO2 injected domain and the depths of release in moving-ship type CO2 ocean sequestration [J]. Journal of Marine Science and Technology, 2013, 18: 220‒228.
|
[4] |
S Haszeldine R. Carbon capture and storage: How green can black be? [J]. Science, 2009, 325(5948): 1647‒1652.
|
[5] |
Metz B, Davidson O, De Coninck H, al et. IPCC special report on carbon dioxide capture and storage [M]. Cambridge: Cambridge University Press, 2005.
|
[6] |
Monteiro J, Roussanaly S. CCUS scenarios for the cement industry: Is CO2 utilization feasible? [J]. Journal of CO2 Utilization, 2022, 61: 102015.
|
[7] |
Wei N, Liu S N, Jiao Z S, al et. A possible contribution of carbon capture, geological utilization, and storage in the Chinese crude steel industry for carbon neutrality [J]. Journal of Cleaner Production, 2022, 374: 133793.
|
[8] |
American Society of Civil Engineers. Carbon capture and storage: Physical, chemical, and biological methods [C]. Reston: American Society of Civil Engineers, 2015.
|
[9] |
张贤 , 李阳 , 马乔 , 等 . 我国碳捕集利用与封存技术发展研究 [J]. 中国工程科学 , 2021 , 23 6 : 70 ‒ 80 .
|
[10] |
李姜辉 , 李鹏春 , 李彦尊 , 等 . 离岸碳捕集利用与封存技术体系研究 [J]. 中国工程科学 , 2023 , 25 2 : 173 ‒ 186 .
|
[11] |
张旭辉 , 郑委 , 刘庆杰 . CO 2 地质埋存后的逃逸问题研究进展 [J]. 力学进展 , 2010 , 40 5 : 517 ‒ 527 .
|
[12] |
Metz B, Davidson O, De Coninck H, al et. IPCC special report on carbon dioxide capture and storage [C]. Geneva: Intergovernmental Panel on Climate Change, 2005.
|
[13] |
Dixon T, McCoy S T, Havercroft I. Legal and regulatory developments on CCS [J]. International Journal of Greenhouse Gas Control, 2015, 40: 431‒448.
|
[14] |
P Schrag D. Storage of carbon dioxide in offshore sediments [J]. Science, 2009, 325(5948): 1658‒1659.
|
[15] |
Pearce J M, M West J. Study of potential impacts of leaks from onshore CO2 storage projects on terrestrial ecosystems [R]. Nottingham: IEA Greenhouse Gas R&D Programme Technical Study, 2007.
|
[16] |
Li Q, Wu Z S, Li X C. Prediction of CO2 leakage during sequestration into marine sedimentary strata [J]. Energy Conversion and Management, 2009, 50(3): 503‒509.
|
[17] |
Anderson J, Bachu S, Nimir H B, al et. Underground geological storage [R]. Cambridge: Cambridge University Press, 2005.
|
[18] |
Liu S Y, Ren B, Li H Y, al et. CO2 storage with enhanced gas recovery (CSEGR): A review of experimental and numerical studies [J]. Petroleum Science, 2022, 19(2): 594‒607.
|
[19] |
Kumar N, Sampaio M A, Ojha K, al et. Fundamental aspects, mechanisms and emerging possibilities of CO2 miscible flooding in enhanced oil recovery: A review [J]. Fuel, 2022, 330: 125633.
|
[20] |
Tanase D, Tanaka J. Progress of CO2 injection and monitoring of the Tomakomai CCS Demonstration Project [C]. Abu Dhabi: Proceedings of the 15th Greenhouse Gas Control Technologies Conference, 2021.
|
[21] |
李春峰 , 赵学婷 , 段威 , 等 . 中国海域盆地CO 2 地质封存选址方案与构造力学分析 [J]. 力学学报 , 2023 , 55 3 : 1 ‒ 13 .
|
[22] |
霍传林 . 我国近海二氧化碳海底封存潜力评估和封存区域研究 [D]. 大连 : 大连海事大学 博士学位论文 , 2014 .
|
[23] |
衣华磊 , 郭欣 , 贾津耀 , 等 . 恩平15-1油田开发CO 2 回注封存工程方案研究 [J]. 中国海上油气 , 2023 , 35 1 : 163 ‒ 169 .
|
[24] |
N Nguyen D. Carbon dioxide geological sequestration: Technical and economic reviews [C]. San Antonio: SPE/EPA/DOE Exploration and Production Environmental Conference, 2003.
|
[25] |
赵小令 , 肖晋宇 , 侯金鸣 , 等 . 中国二氧化碳捕集利用和封存技术经济性与规模预测 [J]. 石油勘探与开发 , 2023 , 50 3 : 1 ‒ 12 .
|
[26] |
Marshall J. A social exploration of the west Australian Gorgon gas, carbon capture and storage project [J]. Clean Technologies, 2022, 4(1): 67‒90.
|
[27] |
Rutqvist J, F Tsang C. A study of caprock hydromechanical changes associated with CO2-injection into a brine formation [J]. Environmental Geology, 2002, 42(2): 296‒305.
|
[28] |
Rosenbauer R J, Koksalan T, L Palandri J. Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers [J]. Fuel Processing Technology, 2005, 86(14‒15): 1581‒1597.
|
[29] |
Blackford J, Stahl H, Bull J, al et. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage [J]. Nature Climate Change, 2014, 4(11): 1011‒1016.
|
[30] |
Atamanchuk D, Tengberg A, Aleynik D, al et. Detection of CO2 leakage from a simulated sub-seabed storage site using three different types of pCO2 sensors [J]. International Journal of Greenhouse Gas Control, 2015, 38: 121‒134.
|
[31] |
Bourne S, Crouch S, Smith M. A risk-based framework for measurement, monitoring and verification of the Quest CCS Project, Alberta, Canada [J]. International Journal of Greenhouse Gas Control, 2014, 26: 109‒126.
|
[32] |
Dean M, Blackford J, Connelly D, al et. Insights and guidance for offshore CO2 storage monitoring based on the QICS, ETI MMV, and STEMM-CCS projects [J]. International Journal of Greenhouse Gas Control, 2020, 100: 103120.
|
[33] |
Flohr A, Schaap A, Achterberg E P, al et. Towards improved monitoring of offshore carbon storage: A real-world field experiment detecting a controlled sub-seafloor CO2 release [J]. International Journal of Greenhouse Gas Control, 2021, 106: 103237.
|
[34] |
Saleem U, Dewar M, Chaudhary T N, al et. Numerical modelling of CO2 migration in heterogeneous sediments and leakage scenario for STEMM-CCS field experiments [J]. International Journal of Greenhouse Gas Control, 2021, 109: 103339.
|
[35] |
Krylov A A, Egorov I V, Kovachev S A, al et. Ocean-bottom seismographs based on broadband met sensors: Architecture and deployment case study in the arctic [J]. Sensors, 2021, 21(12): 3979.
|
[36] |
Würdemann H, Möller F, Kühn M, al et. CO2 SINK—From site characterisation and risk assessment to monitoring and verification: One year of operational experience with the field laboratory for CO2 storage at Ketzin, Germany [J]. International Journal of Greenhouse Gas Control, 2010, 4(6): 938‒951.
|
[37] |
Wu J X, Guo X J, Sun X, al et. Flume experiment evaluation of resistivity probes as a new tool for monitoring gas migration in multilayered sediments [J]. Applied Ocean Research, 2020, 105: 102415.
|
[38] |
Nooner S L, Eiken O, Hermanrud C, al et. Constraints on the in situ density of CO2 within the Utsira formation from time-lapse seafloor gravity measurements [J]. international Journal of Greenhouse Gas Control, 2007, 1(2): 198‒214.
|
[39] |
Stegmann S, Sultan N, Pelleau P, al et. A long-term monitoring array for landslide precursors: A case study at the Ligurian Slope (Western Mediterranean Sea) [C]. Houston: Offshore Technology Conference, 2012.
|
[40] |
Wang Z H, Jia Y G, Liu X L, al et. In situ observation of storm-wave-induced seabed deformation with a submarine landslide monitoring system [J]. Bulletin of Engineering Geology and the Environment, 2018, 77(7): 1091‒1102.
|
[41] |
陈天 , 贾永刚 , 刘涛 , 等 . 海底沉积物孔隙压力原位长期观测技术回顾和展望 [J]. 地学前缘 , 2022 , 29 5 : 229 ‒ 245 .
|
[42] |
Menapace W, Völker D, Sahling H, al et. Long-term in situ observations at the Athina mud volcano, Eastern Mediterranean: Taking the pulse of mud volcanism [J]. Tectonophysics, 2017, 721: 12‒27.
|
[43] |
蔡博峰 , 李琦 , 张贤 , 等 . 中国二氧化碳捕集利用与封存CCUS年度报告2021——中国CCUS路径研究 [R]. 北京 武汉 : 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心 , 2021 .
|
/
〈 |
|
〉 |