高端新材料智能制造的发展机遇与方向

孙宝德, 疏达, 付华栋, 汪东红, 彭立明, 王新云, 朱言言, 王华明, 丁文江, 谢建新

中国工程科学 ›› 2023, Vol. 25 ›› Issue (3) : 152-160.

PDF(631 KB)
PDF(631 KB)
中国工程科学 ›› 2023, Vol. 25 ›› Issue (3) : 152-160. DOI: 10.15302/J-SSCAE-2023.03.014
工程前沿
Orginal Article

高端新材料智能制造的发展机遇与方向

作者信息 +

Intelligent Manufacturing for High-End New Materials: Opportunities and Directions

Author information +
History +

摘要

发展智能制造是我国制造业创新升级的主攻方向,高端新材料是支撑高端装备和重大工程需求的核心材料,推动智能制造与高端新材料制造紧密结合,对提升高端新材料制造能力,满足重大装备对高端新材料的需求,具有重要意义。本文深入分析了高端新材料智能制造的必要性,在分析面向高端新材料的高性能制造、复杂构件的整体化与轻量化制造、高端构件的一体化与低成本绿色制造等特征基础上,总结了传统“试错法”研发模式在材料制造领域遇到的主要问题与挑战,分析了数据驱动的高端新材料智能制造研发模式带来的重大变革与机遇,并以材料智能加工成形为例,全面梳理了亟需发展的共性关键技术及其发展方向。本文从加强关键技术研究、构建创新体系、创新学科交叉人才培养和加快成果转化等方面,提出了加快发展高端新材料智能制造的对策建议,以缩短与国外先进水平的差距,支撑我国材料产业的升级换代和跨越式发展。

Abstract

Intelligent manufacturing is the main upgrading direction for China’s manufacturing industry and high-end new materials are core for high-end equipment and major engineering projects; therefore, promoting the integration of intelligent manufacturing and high-end new material manufacturing is crucial for enhancing the manufacturing capacity of high-end new materials and satisfying the demand of major equipment for high-end new materials. This study first analyzes the necessity of promoting intelligent manufacturing for high-end new materials. With increasing demands for high-performance manufacturing of high-end new materials, integration and lightweight manufacturing of complex components, and efficient and low-cost green manufacturing of high-end components, serious problems and huge challenges have been encountered by the traditional trial-and-error method for materials manufacturing. Meanwhile, grand opportunities are provided by a data-driven research and development mode for intelligent materials manufacturing. Taking materials forming and processing as an example, the common key technologies of intelligent materials manufacturing that need to be developed are systematically clarified, and countermeasures and suggestions to accelerate the development of intelligent manufacturing for high-end new materials, including key technology research and development, innovation system establishment, interdisciplinary talent cultivation, and achievement transfer, are also proposed, in order to support the upgrading and leapfrog development of China's materials industry.

关键词

高端新材料 / 智能制造 / 材料加工 / 集成计算 / 大数据 / 人工智能

Keywords

high-end new materials / intelligent manufacturing / materials processing / integrated computation / big data / artificial intelligence

引用本文

导出引用
孙宝德, 疏达, 付华栋. 高端新材料智能制造的发展机遇与方向. 中国工程科学. 2023, 25(3): 152-160 https://doi.org/10.15302/J-SSCAE-2023.03.014

参考文献

[1]
谢曼 , 干勇 , 王慧 . 面向2035的新材料强国战略研究 [J]. 中国工程科学 , 2020 , 22 5 : 1 ‒ 9 .
[2]
中国工程院化工、冶金与材料工程学部 , 中国材料研究学会 编. 中国新材料产业发展报告2021 [M]. 北京 : 化学工业出版社 , 2022 .
[3]
钟志华 , 臧冀原 , 延建林 , 等 . 智能制造推动我国制造业全面创新升级 [J]. 中国工程科学 , 2020 , 22 6 : 136 ‒ 142 .
[4]
李元元 . 新形势下我国新材料发展的机遇与挑战 [J]. 中国军转民 , 2022 1 : 22 ‒ 23 .
[5]
郭东明 . 高性能精密制造 [J]. 中国机械工程 , 2018 , 29 7 : 757 ‒ 765 .
[6]
孙宝德 , 王俊 , 康茂东 , 等 . 高温合金超限构件精密铸造技术及发展趋势 [J]. 金属学报 , 2022 , 58 4 : 412 ‒ 427 .
[7]
王华明 . 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报 , 2014 , 35 10 : 2690 ‒ 2698 .
[8]
谢建新 . 材料加工技术的发展现状与展望 [J]. 机械工程学报 , 2003 , 39 9 : 29 ‒ 34 .
[9]
潘健生 , 王婧 , 顾剑锋 . 我国高性能化智能制造发展战略研究 [J]. 金属热处理 , 2015 , 40 1 : 1 ‒ 6 .
[10]
Wadley H N G, Vancheeswaran R. The intelligent processing of materials: An overview and case study [J]. JOM, 1998, 50(1): 19‒30.
[11]
Wadley H N G, Eckhart W E. The intelligent processing of materials for design and manufacturing [J]. JOM, 1989, 41(10): 10‒16.
[12]
Parrish P A, Barker W G. The basics of the intelligent processing of materials [J]. JOM, 1990, 42(7): 14‒16.
[13]
宿彦京 , 付华栋 , 白洋 , 等 . 中国材料基因工程研究进展 [J]. 金属学报 , 2020 , 56 10 : 1313 ‒ 1323 .
[14]
Wang H, Xiang X D, Zhang L T. On the data-driven materials innovation infrastructure [J]. Engineering, 2020, 6: 609‒611.
[15]
Agrawal A, Choudhary A. Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science [J]. APL Materials, 2016, 4: 053208.
[16]
谢建新 , 宿彦京 , 薛德祯 , 等 . 机器学习在材料研发中的应用 [J]. 金属学报 , 2021 , 57 11 : 1343 ‒ 1361 .
[17]
Fang S F, Wang M P, Song M. An approach for the aging process optimization of Al-Zn-Mg-Cu series alloys [J]. Materials & Design, 2009, 30(7): 2460‒2467.
[18]
Chen Y, Tian Y, Zhou Y, et al. Machine learning assisted multi-objective optimization for materials processing parameters: A case study in Mg alloy [J]. Journal of Alloys and Compounds, 2020, 844: 156159.
[19]
Batra R, Song L, Ramprasad R. Emerging materials intelligence ecosystems propelled by machine learning [J]. Nature Reviews Materials, 2021, 6: 655‒678.
基金
中国工程院咨询项目“新材料研发与制造应用智能化战略研究”(2021-JJZD-01);国家自然科学基金重大项目(52090042)
PDF(631 KB)

Accesses

Citation

Detail

段落导航
相关文章

/