高熵合金材料研究进展与展望

李天昕, 王书道, 卢一平, 曹志强, 王同敏, 李廷举

中国工程科学 ›› 2023, Vol. 25 ›› Issue (3) : 170-181.

PDF(644 KB)
PDF(644 KB)
中国工程科学 ›› 2023, Vol. 25 ›› Issue (3) : 170-181. DOI: 10.15302/J-SSCAE-2023.03.016
工程前沿
Orginal Article

高熵合金材料研究进展与展望

作者信息 +

Research Progress and Prospect of High-Entropy Alloy Materials

Author information +
History +

摘要

随着世界科技水平的快速发展以及国民经济建设对高性能合金材料的迫切需求,传统单一主元合金逐渐不能满足人们与日俱增的使役需求。高熵合金因其独特的物理、化学以及力学性能,极大地拓展了金属材料成分设计范围,有望在国防、航空、航天、海洋、核能、医疗、新能源等重大工程领域发挥重要作用。本文结合各领域对先进高熵合金材料的具体需求,梳理了高熵合金材料的特征和内涵,分析了高熵合金材料发展的整体形势与前景,厘清了国内外高熵合金的发展现状。在此基础上,指出了我国高熵合金领域存在的差距和不足,我国高熵合金部分基础原材料依赖进口,严重威胁产业链安全;高熵合金产学研用体系尚未健全,工业化应用方面的研发投入有待提高。针对上述问题,研究建议,加强高熵合金材料研发的顶层设计,完善产业政策;加强企业和科研机构的对接和沟通;完善高熵合金材料标准、测试、表征、评价体系;推进人才队伍建设;降低材料成本,打造高附加值产品,促进我国先进高熵合金材料产业朝着体系化、绿色化、高端化、智能化方向发展。

Abstract

With the rapid development of world’s technological level and the urgent demand of national economic construction for high-performance alloy materials, traditional single-component alloys gradually fail to satisfy the increasing service requirements. Owing to their unique physical, chemical, and mechanical properties, high-entropy alloys are expected to play an important role in major engineering fields such as national defense, aviation, aerospace, marine, nuclear energy, medical care, and new energy, greatly expanding the design range of metal material compositions. In this paper, based on the specific demands of advanced high-entropy alloy materials in various fields, the characteristics and connotations of high-entropy alloy materials are summarized, and the overall situation and prospects of high-entropy alloy material development are analyzed, as well as the current status of high-entropy alloy development in China and abroad. On this basis, the gaps and deficiencies in the field of high-entropy alloys in China are pointed out. First, some basic raw materials of the high-entropy alloys still rely on imports, which severely threatens the security of the industrial chain. Second, the research and development investment in industrial application of high-entropy alloys needs to be increased, and the industrial–academia–research–application system of high-entropy alloys is not yet sound. Regarding the above-mentioned issues, this study proposes the following policies and measures: strengthening the top-level design of high-entropy alloy material research and development while improving industrial policies; strengthening the connection and communication between enterprises and research institutes; improving the standardization, testing, characterization, and evaluation systems of high-entropy alloy materials; advancing the construction of talent teams; and reducing material costs and creating high value-added products, to promote the systematic, green, high-end, and intelligent development of China’s advanced high-entropy alloy material industry.

关键词

高熵合金 / 新材料 / 有色金属 / 关键战略材料 / 结构材料 / 功能材料

Keywords

high-entropy alloy / new materials / non-ferrous materials / key strategic materials / structural materials / functional materials

引用本文

导出引用
李天昕, 王书道, 卢一平. 高熵合金材料研究进展与展望. 中国工程科学. 2023, 25(3): 170-181 https://doi.org/10.15302/J-SSCAE-2023.03.016

参考文献

[1]
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6: 299–303.
[2]
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Materials Science and Engineering: A, 2004, 375: 213–218.
[3]
Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. JOM: The Journal of the Minerals, Metals & Materials Society, 2013, 65(12): 1759‒1771.
[4]
Li W, Xie D, Li D, al el. Mechanical behavior of high-entropy alloys [J]. Progress in Materials Science, 2021, 118: 100777.
[5]
Liu D, Yu Q, Kabra S, et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin [J]. Science, 2022, 378(6623): 978‒983.
[6]
Lee C, Maresca F, Feng R, et al. Strength can be controlled by edge dislocations in refractory high-entropy alloys [J]. Nature Communication, 2021, 12(1): 5474.
[7]
He Q F, Wang J G, Chen H A, et al. A highly distorted ultraelastic chemically complex Elinvar alloy [J]. Nature 2022, 602(7896): 251‒257.
[8]
Lei Z, Wu Y, He J, et al. Snoek-type damping performance in strong and ductile high-entropy alloys [J]. Science Advances, 2021, 6(25): eaba7802.
[9]
Han L L, Maccari F, Souza Filho I R, et al. A mechanically strong and ductile soft magnet with extremely low coercivity [J]. Nature, 2022, 608(7922): 310‒316.
[10]
Li R, Liu X, Liu W, et al. Design of hierarchical porosity via manipulating chemical and microstructural complexities in high-entropy alloys for efficient water electrolysis [J]. Advanced Science, 2022, 9: e2105808.
[11]
王宝亭 , 耿鸿武‍ . 中国医疗器械行业发展报告2022 [M]. 北京 : 社会科学文献出版社 , 2022 .
[12]
中经产业研究所‍ . 2020年中国储氢材料行业发展现状分析 [R]. 北京 : 中经产业研究所 , 2020 .
[13]
翁兴园‍ . 我国磁性材料及器件行业发展现状和趋势上 [J]. 新材料产业 , 2021 4 : 4 .
[14]
Xie Y M, Meng X C, Zang R Z L, et al. Deformation-driven modification towards strength-ductility enhancement in AlLiMgZnCu lightweight high-entropy alloys [J]. Materials Science & Engineering A, 2022, 830: 142332.
[15]
Yan X H, Liaw P K, Zhang Y. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. Journal of Materials Science & Technology, 2022, 110: 109‒116.
[16]
Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high-entropy alloys—A review [J]. Journal of Materials Research, 2018, 33(19): 3092‒3128.
[17]
Duan J, Wang M, Huang R, et al. A novel high-entropy alloy with an exceptional combination of soft magnetic properties and corrosion resistance [J]. Science China Materials, 2023, 66(2): 772‒779.
[18]
Wu P, Gan K, Yan D, et al. A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy [J]. Corrosion Science, 2021, 183: 109341.
[19]
Shuang S, Ding Z Y, Chung D, et al. Corrosion resistant nanostructured eutectic high-entropy alloy [J]. Corrosion Science, 2020, 164: 108315.
[20]
Zhang S, Wu C L, Zhang C H, et al. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance [J]. Optics & Laser Technology. 2016, 84: 23‒31.
[21]
Jiang X J, Wang S Z, Fu H, et al. A novel high-entropy alloy coating on Ti-6Al-4V substrate by laser cladding [J]. Materials Letters, 2022, 308: 131131.
[22]
Li X, Zheng Z, Dou D, et al. Microstructure and properties of coating of FeAlCuCrCoMn high-entropy alloy deposited by direct current magnetron sputtering [J]. Materials Research, 2016, 19(4): 802‒806.
[23]
Yuan Y, Wu Y, Yang Z, et al. Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys [J]. Materials Research Letters, 2019, 7: 225‒231.
[24]
Gurel S, Yagci M, Canadinc D, et al. Fracture behavior of novel biomedical Ti-based high-entropy alloys under impact loading [J]. Materials Science and Engineering: A, 2021, 803: 140456.
[25]
Wang S P, Xu J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties [J]. Materials Science and Engineering: C, 2017, 93: 80‒89.
[26]
Zhou E, Qiao D, Yang Y, et al. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms [J]. Journal of Materials Science & Technology, 2020, 46(11): 201‒210.
[27]
Ren G, Huang L, Hu K, et al. Enhanced antibacterial behavior of a novel Cu-bearing high-entropy alloy [J]. Journal of Materials Science & Technology, 2022, 117: 158‒166.
[28]
Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nature Communications, 2016, 7: 13564
[29]
Lu Y P, Huang H F, Gao X X, et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy [J]. Journal of Materials Science & Technology, 2019, 35(3): 369‒373.
[30]
El-Atwani O, Li N, Li M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys [J]. Science Advances, 2019, 5(3): eaav2002.
[31]
Su Z X, Ding J, Song M, et al. Enhancing the radiation tolerance of high-entropy alloys via solute-promoted chemical heterogeneities [J]. Acta Materialia, 2023, 245: 118662.
[32]
Liu S, Lin W, Chen D, et al. Effects of temperature on helium cavity evolution in single-phase concentrated solid-solution alloys [J]. Journal of Nuclear Materials, 2021, 557: 153261.
[33]
Jia N, Li Y, Huang H, et al. Helium bubble formation in refractory single-phase concentrated solid solution alloys under MeV He ion irradiation [J]. Journal of Nuclear Materials, 2021, 550: 152937.
[34]
Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Scientific Reports, 2014, 4(1): 1‒5.
[35]
Shi P, Ren W, Zheng T, et al. Enhanced strength‒ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae [J]. Nature Communications, 2019, 10(1): 1‒8.
[36]
Shi P, Li R, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373(6557): 912‒918.
[37]
Lu Y, Wu X, Fu Z, et al. Ductile and ultrahigh-strength eutectic high-entropy alloys by large-volume 3D printing [J]. Journal of Materials Science & Technology, 2022, 126: 15‒21.
[38]
Cheng Z, Wang S, Wu G, et al. Tribological properties of high-entropy alloys: A review [J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29: 389‒403.
[39]
Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J]. Acta Materialia, 2011, 59: 6308‒6317.
[40]
Xin B, Zhang A, Han J, et al. The tribological properties of carbon doped Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloys [J]. Wear, 2021, 484‒485: 204045.
[41]
Yu Y, Wang J, Yang J, et al. Corrosive and tribological behaviors of AlCoCrFeNi-M high entropy alloys under 90 wt.% H2O2 solution [J]. Tribology International, 2019, 131: 24‒32.
[42]
Zhang A, Han J, Su B, et al. Microstructure, mechanical properties and tribological performance of CoCrFeNi high entropy alloy matrix self-lubricating composite [J]. Materials & Design, 2017, 114: 253‒263.
[43]
Xin Y, Li S H, Qian Y Y, et al. High-entropy alloys as a platform for catalysis: Progress, challenges, and opportunities [J]. ACS Catalysis, 2020, 10: 11280‒11306.
[44]
Qiao H, Wang X Z, Dong Q, et al. A high-entropy phosphate catalyst for oxygen evolution reaction [J]. Nano Energy, 2021, 86: 106029.
[45]
Pedersen J, Batchelor T, Bagger A, et al. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: Experimental realization [J]. ACS Catalysis, 2020, 10: 3658‒3663.
[46]
Loeffler T, Meyer H, Savan A, et al. Discovery of a multinary noble metal-free oxygen reduction catalyst [J]. Advanced Energy Materials, 2018, 8(34): 1802269.
[47]
Yao Y G, Huang Z N, Xie P F, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles [J]. Science, 2018, 359(6383): 1489‒1494.
[48]
Liao Y J, Li Y X, Zhao R Z, et al. High-entropy-alloy nanoparticles with 21 ultra-mixed elements for efficient photothermal conversion [J]. National Science Review, 2022, 9(6): nwac041.
[49]
Strozi R B, Leiva D R, Huot J, et al. An approach to design single BCC Mg-containing high-entropy alloys for hydrogen storage applications [J]. International Journal of Hydrogen Energy, 2021, 46(50): 25555‒25561.
[50]
Edalati P, Floriano R, Mohammadi A, et al. Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi [J]. Scripta Materialia, 2020, 178: 387‒390.
[51]
Chen J, Li Z, Huang H, et al. Superior cycle life of TiZrFeMnCrV high-entropy alloy for hydrogen storage [J]. Scripta Materialia, 2022, 212: 114548.
基金
中国工程院咨询项目“我国先进有色金属材料发展战略研究”(2022-XZ-20)
PDF(644 KB)

Accesses

Citation

Detail

段落导航
相关文章

/