
作物表型组大数据技术及装备发展研究
Technology and Equipment of Big Data on Crop Phenomics
集成自动化平台装备和信息化技术手段,获取多尺度、多生境、多源异构的作物表型组大数据,将极大地促进作物功能基因组学、数字育种、智慧栽培的研究进程。本文分析了作物表型组大数据技术及装备的应用需求、产业发展形势,从物理、传输、数据、知识、应用5个层面详细梳理了相应研发现状;从作物表型组大数据高通量获取、作物表型组大数据智能解析技术两方面着手,剖析了我国相关技术、装备、产业应用方面的问题和态势。研究建议,从底层芯片层面突破作物表型传感器关键技术,在可控开源的基础上形成自主化的表型解析技术体系,加强作物表型组大数据技术及装备标准体系建设,提出基因 – 表型 – 环境多维大数据驱动的数字育种和智慧栽培创新模式,建设作物表型组大数据技术及装备人才队伍和协作网络。
Automatic equipment and information technologies make it possible to acquire multi-scale and multi-source heterogeneous data of crops under different growth conditions, forming big data on crop phenomics. This will greatly promote the research progress of crop functional genomics, digital breeding, and smart cultivation. In this paper, the demand for and industrial development of technology and equipment of big data on crop phenomics are analyzed. Then, the current situation of research and development in this area is summarized from five aspects: data acquisition hardware, data transmission, data analysis, knowledge formation, and applications. The problems and developmental trends of relevant technologies, equipment, and industrial application in China are analyzed from the perspectives of high-throughput acquisition and intelligent analysis of big data on crop phenomics. At last, the following suggestions are proposed: achieving breakthroughs regarding key crop phenotyping sensor technologies from the underlying chip level, forming an autonomous phenotyping extraction technology system on the basis of controllable open source, strengthening the standards system construction for big data on crop phenomics, creating a new model of genotype‒phenotype‒environment big data-driven digital breeding and smart cultivation, and building a talent pool and collaborative network for crop phenomics.
作物表型组学 / 表型大数据 / 表型技术及装备 / 多组学
crop phenomics / phenotyping big data / technology and equipment for phenotyping / multi-omics
[1] |
赵春江. 植物表型组学大数据及其研究进展 [J]. 农业大数据学报, 2019, 1(2): 5‒18.
|
[2] |
|
[3] |
|
[4] |
周济,
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
胡伟娟, 傅向东, 陈凡, 等. 新一代植物表型组学的发展之路 [J]. 植物学报, 2019, 54(5): 558‒568.
|
[10] |
|
[11] |
|
[12] |
|
[13] |
王晓鸣, 邱丽娟, 景蕊莲, 等. 作物种质资源表型性状鉴定评价: 现状与趋势 [J]. 植物遗传资源学报, 2022, 23(1): 12‒20.
|
[14] |
全国人民代表大会常务委员会专题调研组. 关于加强种质资源保护和育种创新情况的调研报告 [R/OL]. (2021-10-21)[2023-04-15].
Standing Committee of the National People's Congress Special Research Group. Research report on strengthening the conservation of germplasm resources and breeding innovation [R/OL]. (2021-10-21)[2023-04-15].
|
[15] |
|
[16] |
万建民. 作物分子设计育种 [J]. 作物学报, 2006 (3): 455‒462.
|
[17] |
朱艳, 汤亮, 刘蕾蕾, 等. 作物生长模型(CropGrow)研究进展 [J]. 中国农业科学, 2020, 53(16): 3235‒3256.
|
[18] |
曹卫星, 朱艳, 田永超, 等. 作物精确栽培技术的构建与实现 [J]. 中国农业科学, 2011, 44(19): 3955‒3969.
|
[19] |
Coherent Market Insights. Plant phenotyping market [EB/OL]. (2021-08-01)[2023-04-15].
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
郑庆华, 刘欢, 龚铁梁, 等. 大数据知识工程发展现状及展望 [J]. 中国工程科学, 2023, 25(2): 208‒220.
|
[25] |
|
[26] |
|
[27] |
张慧春, 李杨先, 周宏平, 等. 植物表型平台与图像分析技术研究进展与展望 [J]. 农业机械学报, 2019, 51(3): 1‒22.
|
[28] |
|
[29] |
|
[30] |
|
[31] |
杜建军, 郭新宇, 王传宇, 等. 基于全景图像的玉米果穗流水线考种方法及系统 [J]. 农业工程学报, 2018, 34(13): 195‒202.
|
[32] |
施巍松, 孙辉, 曹杰, 等. 边缘计算: 万物互联时代新型计算模型 [J]. 计算机研究与发展, 2017, 54(5): 907‒924.
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
王璟璐, 张颖, 潘晓迪, 等. 作物表型组数据库研究进展及展望 [J]. 中国农业信息, 2018, 30(5): 13‒23.
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
张颖, 廖生进, 王璟璐, 等. 信息技术与智能装备助力智能设计育种 [J]. 吉林农业大学学报, 2021, 43(2): 119‒129.
|
[55] |
|
[56] |
|
[57] |
顾生浩, 温维亮, 卢宪菊, 等. 作物智慧栽培学——信息 ‒ 农艺 ‒ 农机深度融合的新农科 [J]. 农学学报, 2023, 13(2): 67‒76.
|
[58] |
|
/
〈 |
|
〉 |