
6G关键技术研发竞争格局与应对策略
Global Competitive Situation of 6G Key Technology R&D and China’s Countermeasures
数字经济作为新的经济形态成为推动经济增长的重要驱动力,第六代移动通信(6G)与数字经济之间存在着互促和依存的关系,相应关键技术研发价值重大且国际竞争格局激烈。本文从无线技术、网络技术、安全技术3 个维度出发,系统梳理了6G关键技术研发的原理和发展现状,评估了我国在这些关键技术方向上的全球竞争力;具体技术方向包括无线人工智能技术、超大规模天线技术、太赫兹通信、智能反射面、通信感知一体化,分布式网络技术、“空天地”一体化组网技术、内生智能网络技术、算力网络技术,物理层安全技术、网络层安全技术、数据安全及隐私保护技术。研究建议,加速6G无线、网络、安全等核心技术产业化,以6G网络能力跨越式发展来服务未来业务需求;注重创新保障、产业支撑、扩大内需、人才保障,支持创新生态构建,形成6G产业发展保障支撑;与全球通信产业开展密切合作,积极参与6G国际标准制定,共同推动6G技术产业化。
As a new economic form, the digital economy has become a crucial driver of economic growth. The relationship between the sixth-generation mobile communication (6G) and the digital economy is characterized by mutual promotion and dependence, with significant value in key technology research and intense international competition. This study systematically reviews the principles and current development status of key 6G technologies from three dimensions: 6G wireless technology, network technology, and security technology. It evaluates China’s global competitiveness in these key technology directions, specifically including wireless artificial intelligence (AI), massive MIMO technology, terahertz communication, intelligent reflecting surfaces, integrated sensing and communication, distributed networking, space−air−ground integrated networks, AI‑native networks, computing power networks, physical layer security, network layer security, and data security and privacy protection. The study strongly recommends expediting the industrialization of pivotal technologies such as 6G wireless, networking, and security. This urgency is aimed at facilitating a groundbreaking advancement in 6G network capabilities to meet the evolving demands of future businesses. The emphasis is on safeguarding innovation, providing robust industry support, amplifying domestic demand, and ensuring a steady supply of skilled personnel. Furthermore, it is crucial to endorse the creation of an innovative ecosystem, which will serve as the cornerstone for the sustainable development of the 6G industry. To achieve these goals, the research suggests close collaboration with the global telecommunications industry, active participation in the formulation of international standards for 6G, and collective efforts to propel the industrialization of 6G technology.
第六代移动通信 / 数字经济 / 无线技术 / 网络技术 / 安全技术
6G mobile communication / digital economy / wireless technology / network technology / security technology
[1] |
中国信息通信研究院. 中国5G发展和经济社会影响白皮书(2022年) [EB/OL]. [2023-07-15]. http://www.caict.ac.cn/kxyj/qwfb/bps/202301/P020230316604298102966.pdf.
|
[2] |
IMT Vision—Framework and overall objectives of the future development of IMT for 2020 and beyond [EB/OL]. (2015-09-15)[2023-07-15]. https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf.
|
[3] |
From cloud AI to network AI: A view from 6GANA [EB/OL]. (2021-05-31)[2023-07-15]. http://6g-ana.com/upload/file/20210619/6375969458505193666851527.pdf.
|
[4] |
6G drivers and vision v1.0 [EB/OL]. (2021-04-19)[2023-07-15]. https://www.ngmn.org/wp-content/uploads/NGMN-6G-Drivers-and-Vision-V1.0_final_New.pdf.
|
[5] |
Saad W, Bennis M, Chen M Z. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems [J]. IEEE Network, 2020, 34(3): 134‒142.
|
[6] |
Zhang Z Q, Xiao Y, Ma Z, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies [J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28‒41.
|
[7] |
张海君, 陈安琪, 李亚博, 等. 6G移动网络关键技术 [J]. 通信学报, 2022, 43(7): 189‒202.
|
[8] |
Shen X M, Gao J, Wu W, et al. Holistic network virtualization and pervasive network intelligence for 6G [J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 1‒30.
|
[9] |
Faisal A, Sarieddeen H, Dahrouj H, et al. Ultramassive MIMO systems at terahertz bands: Prospects and challenges [J]. IEEE Vehicular Technology Magazine, 2020, 15(4): 33‒42.
|
[10] |
Wu Q Q, Zhang R. Intelligent reflecting surface enhanced wireless network: Joint active and passive beamforming design [C]. Abu Dhabi: 2018 IEEE Global Communications Conference (GLOBECOM), 2018.
|
[11] |
Liu F, Cui Y H, Masouros C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond [J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728‒1767.
|
[12] |
IMT‒2030 (6G)推进组. 6G网络架构愿景与关键技术展望白皮书 [R]. 北京: IMT‒2030 (6G)推进组, 2021.
|
[13] |
Hoydis J, Aoudia F A, Valcarce A, et al. Toward a 6G AI-native air interface [J]. IEEE Communications Magazine, 2021, 59(5): 76‒81.
|
[14] |
中国移动研究院. 6G无线内生AI架构与技术白皮书 (2022) [R]. 北京: 中国移动研究院, 2022.
|
[15] |
Letaief K B, Chen W, Shi Y M, et al. The roadmap to 6G: AI empowered wireless networks [J]. IEEE Communications Magazine, 2019, 57(8): 84‒90.
|
[16] |
Ylianttila M, Kantola R, Gurtov A, et al. 6G white paper: Research challenges for trust, security and privacy [EB/OL]. (2020-04-24)[2023-07-15]. https://arxiv.org/abs/2004.11665.pdf.
|
[17] |
Arfaoui M A, Soltani M D, Tavakkolnia I, et al. Physical layer security for visible light communication systems: A survey [J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 1887‒1908.
|
[18] |
IMT‒2030 (6G)推进组. 智能超表面技术研究报告 [R]. 北京: IMT‒2030 (6G)推进组, 2021.
|
[19] |
迟楠, 贾俊连. 面向6G的可见光通信 [J]. 中兴通讯技术, 2020, 26(2): 11‒19.
|
[20] |
IMT‒2030 (6G)推进组. 太赫兹技术通信研究报告 [R]. 北京: IMT‒2030 (6G)推进组, 2021.
|
[21] |
谢莎, 李浩然, 李玲香, 等. 太赫兹通信技术综述 [J]. 通信学报, 2020, 41(5): 168‒186.
|
[22] |
Liu Y, Wang H S, Peng M G, et al. DeePGA: A privacy-preserving data aggregation game in crowdsensing via deep reinforcement learning [J]. IEEE Internet of Things Journal, 2020, 7(5): 4113‒4127.
|
[23] |
Peng M G, Li Y, Jiang J M, et al. Heterogeneous cloud radio access networks: A new perspective for enhancing spectral and energy efficiencies [J]. IEEE Wireless Communications, 2014, 21(6): 126‒135.
|
[24] |
彭木根, 艾元. 异构云无线接入网络: 原理、架构、技术和挑战 [J]. 电信科学, 2015, 31(5): 47‒51.
|
/
〈 |
|
〉 |