电化学储能技术发展研究

潘新慧, 陈人杰,吴锋

中国工程科学 ›› 2023, Vol. 25 ›› Issue (6) : 225-236.

PDF(1283 KB)
PDF(1283 KB)
中国工程科学 ›› 2023, Vol. 25 ›› Issue (6) : 225-236. DOI: 10.15302/J-SSCAE-2023.06.019
工程前沿

电化学储能技术发展研究

作者信息 +

Development of Electrochemical Energy Storage Technology

Author information +
History +

摘要

作为新型电力系统重要组成部分的电化学储能,是解决可再生能源高比例消纳的重要手段、促成“源网荷储”协调运 行的关键装置;电化学储能技术作为新型储能的主流技术、未来能源绿色低碳转型的核心技术,在诸多方面仍待深入发展才 能适应储能规模快速增长、储能系统更为复杂带来的挑战。本文从电源侧、电网侧、用户储能侧出发,分析了电化学储能发 展的需求背景,系统梳理了电化学储能技术在战略布局、关键材料、结构设计等方面的研究进展;在阐明电化学储能技术发 展趋势的基础上,辨识了产品规格不统一、检测平台不完善、理论与实践不贯通、应用成本不理想等制约发展的关键问题。 研究认为,高性能、高安全性、低成本的关键材料,储能器件结构优化及评价,储能系统多能互补及智能化设计,电化学储 能商业化应用模式是后续重点发展方向,需要强化试点示范应用、制定行业标准体系、完善基础设施建设、培育储能人才团 队,以保障电化学储能技术及产业高质量发展。

Abstract

As an important component of the new power system, electrochemical energy storage is crucial for addressing the challenge regarding high-proportion consumption of renewable energies and for promoting the coordinated operation of the source, grid, load, and storage sides. As a mainstream technology for energy storage and a core technology for the green and low-carbon transformation of existing energy structures, the electrochemical energy storage technology still needs to be further developed to adapt to the challenges brought about by the rapid growth of energy storage scale and the increasingly complex energy storage system. This study analyzes the demand for electrochemical energy storage from the power supply, grid, and user sides, and reviews the research progress of the electrochemical energy storage technology in terms of strategic layout, key materials, and structural design. Moreover, it clarifies the development trend of electrochemical energy storage technologies and identifies the problems such as inconsistency in product specifications, deficiency in detection platforms, and disconnection between theory and practice. Future efforts need to focus on the following directions: key materials with high performance, high safety, and low cost; optimization and evaluation of the structures of energy storage devices; multi-energy complementary and intelligent design of the energy storage systems; and commercial application modes of electrochemical energy storage. Furthermore, it is necessary to strengthen pilot demonstrations, formulate an industry standards system, improve the infrastructure, and cultivate talent teams for energy storage, thereby ensuring the high-quality development of the electrochemical energy storage technologies and industry.

关键词

电化学储能 / 关键材料 / 结构设计 / 标准体系 / 新型电力系统

Keywords

electrochemical energy storage / critical materials / structural design / standard system / new power system

引用本文

导出引用
潘新慧, 陈人杰,吴锋. 电化学储能技术发展研究. 中国工程科学. 2023, 25(6): 225-236 https://doi.org/10.15302/J-SSCAE-2023.06.019

参考文献

[1]
郑琼, 江丽霞, 徐玉杰, 等‍‍. 碳达峰、碳中和背景下储能技术研究进展与发展建议 [J]‍. 中国科学院院刊, 2022, 37(4): 529‒540‍.
[2]
Jiang P K, Huang X Y‍. Editorial: Dielectric materials for electrical energy storage [J]‍. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(2): 675‍.
[3]
成润婷, 张勇军, 李立浧, 等‍. 面向高比例可再生能源消纳的电力市场建设及研究进展 [J]‍. 中国工程科学, 2023, 25(2): 89‒99‍.
[4]
任景, 周鑫, 薛晨, 等‍. 发用两侧参与调峰的现货市场联合出清模式设计 [J]‍. 电力工程技术, 2022, 41(1): 26‒33‍.
[5]
武强, 涂坤, 曾一凡‍. "双碳" 目标愿景下我国能源战略形势若干问题思考 [J]‍. 科学通报, 2023, 68(15): 1884‒1898‍.
[6]
齐宁, 程林, 田立亭, 等‍. 考虑柔性负荷接入的配电网规划研究综述与展望 [J]‍. 电力系统自动化, 2020, 44(10): 193‒207‍.
[7]
张智刚, 康重庆‍. 碳中和目标下构建新型电力系统的挑战与展望 [J]‍. 中国电机工程学报, 2022, 42(8): 2806‒2819‍.
[8]
李晓宇, 吴果莲, 苑秀娥, 等‍. 可再生能源发电侧储能项目经济评价研究 [J]‍. 电力科学与工程, 2023, 39(8): 41‒52‍.
[9]
汤广福, 周静, 庞辉, 等‍. 能源安全格局下新型电力系统发展战略框架 [J]‍. 中国工程科学, 2023, 25(2): 79‒88‍.
[10]
Su Y N, Dai H L, Kuang L Q, et al‍. Contemplation on China´s energy-development strategies and initiatives in the context of its carbon neutrality goal [J]‍. Engineering, 2021, 7(12): 1684‒1687‍.
[11]
Fichtner M, Edström K, Ayerbe E, et al‍. Rechargeable batteries of the future—The state of the art from a BATTERY 2030+ perspective [J]‍. Advanced Energy Materials, 2022, 12(17): 2102904‍.
[12]
史冬梅, 王晶‍. 中国、日本、韩国电池技术和产业发展战略态势分析 [J]‍. 储能科学与技术, 2023, 12(2): 615‒628‍.
[13]
黄学杰, 赵文武, 邵志刚, 等‍. 我国新型能源材料发展战略研究 [J]‍. 中国工程科学, 2020, 22(5): 60‒67‍.
[14]
Ryu H H, Lim H W, Kang G C, et al‍. Long-lasting Ni-rich NCMA cathodes via simultaneous microstructural refinement and surface modification [J]‍. ACS Energy Letters, 2023, 8(3): 1354‒1361‍.
[15]
党荣彬, 陆雅翔, 容晓晖, 等‍. 钠离子电池关键材料研究及工程化探索进展 [J]‍. 科学通报, 2022, 67(30): 3546‒3564‍.
[16]
Xu S Y, Wu X Y, Li Y M, et al‍. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries [J]‍. Chinese Physics B, 2014, 23(11): 118202‍.
[17]
Ding F X, Zhao C L, Zhou D, et al‍. A novel Ni-rich O3-Na[Ni0‍.60Fe0‍.25Mn0‍.15]O2 cathode for Na-ion batteries [J]‍. Energy Storage Materials, 2020, 30: 420‒430‍.
[18]
Li Y Q, Zhou Q, Weng S T, et al‍. Interfacial engineering to achieve an energy density of over 200 W·h·kg-1 in sodium batteries [J]‍. Nature Energy, 2022, 7: 511‒519‍.
[19]
Chen R J, Zhao T, Wu F‍. From a historic review to horizons beyond: Lithium-sulphur batteries run on the wheels [J]‍. Chemical Communications, 2015, 51(1): 18‒33‍.
[20]
Wu F, Ye Y S, Chen R J, et al‍. Gluing carbon black and sulfur at nanoscale: A polydopamine-based "nano-binder" for double-shelled sulfur cathodes [J]‍. Advanced Energy Materials, 2016, 7(3): 1601591‍.
[21]
Han M S, Mu Y B, Wei L, et al‍. Multilevel carbon architecture of subnanoscopic silicon for fast-charging high-energy-density lithium-ion batteries [EB/OL]‍. (2023-06-21)[2023-08-15]‍. https: //onlinelibrary‍.wiley‍.com/doi/10‍.1002/cey2‍.377‍.
[22]
Li Z S, Zhao Z Y, Pan S Y, et al‍. Covalent coating of micro-sized silicon with dynamically bonded graphene layers toward stably cycled lithium storage [J]‍. Advanced Energy Materials, 2023, 13(28): 2300874‍.
[23]
Chen Y, Yang L F, Guo F L, et al‍. Mechanical-electrochemical modeling of silicon-graphite composite anode for lithium-ion batteries [J]‍. Journal of Power Sources, 2022, 527: 231178‍.
[24]
Tang Z, Zhang R, Wang H Y, et al‍. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery [J]‍. Nature Communications, 2023, 14: 6024‍.
[25]
Liang J W, Chen N, Li X N, et al‍. Li10Ge(P1-xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability [J]‍. Chemistry of Materials, 2020, 32(6): 2664‒2672‍.
[26]
Peng J, Wu D X, Jiang Z W, et al‍. Stable interface between sulfide solid electrolyte and room-temperature liquid lithium anode [J]‍. ACS Nano, 2023, 17(13): 12706‒12722‍.
[27]
Hu L, Wang J Z, Wang K, et al‍. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries [J]‍. Nature Communications, 2023, 14: 3807‍.
[28]
Li Y X, Song S B, Kim H, et al‍. A lithium superionic conductor for millimeter-thick battery electrode [J]‍. Science, 2023, 381(6653): 50‒53‍.
[29]
张华民‍. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望 [J]‍. 储能科学与技术, 2022, 11(9): 2772‒2780‍.
[30]
Wu F, Qian J, Chen R J, et al‍. Sulfur cathode based on layered carbon matrix for high-performance Li-S batteries [J]‍. Nano Energy, 2015, 12: 742‒749‍.
[31]
Cheng C Y, Liu H Z, Ouyang C Y, et al‍. A high-temperature stable composite polyurethane separator coated Al2O3 particles for lithium ion battery [J]‍. Composites Communications, 2022, 33: 101217‍.
[32]
Xiao J, Shi F F, Glossmann T, et al‍. From laboratory innovations to materials manufacturing for lithium-based batteries [J]‍. Nature Energy, 2023, 8: 329‒339‍.
[33]
刘阳, 滕卫军, 谷青发, 等‍. 规模化多元电化学储能度电成本及其经济性分析 [J]‍. 储能科学与技术, 2023, 12(1): 312‒318‍.
[34]
张鸿宇, 王宇‍. 国外电网侧储能电站参与调频辅助服务市场的机制经验及对我国的启示 [J]‍. 储能科学与技术, 2021, 10(2): 766‒773‍.
[35]
Ren D S, Lu L G, Hua R, et al‍. Challenges and opportunities of practical sulfide-based all-solid-state batteries [J]‍. eTransportation, 2023, 18: 100272‍.
基金
国家重点研发计划项目(2022YFB2502102);北京高校卓越青年科学家计划项目(BJJWZYJH01201910007023);山东省中央引导地方科技发展资金项目(YDZX2023049)
PDF(1283 KB)

Accesses

Citation

Detail

段落导航
相关文章

/