风光波动电源下质子交换膜电解水制氢技术发展与应用

丁历威, 彭笑东, 侯继彪, 康伟, 吕洪坤, 章康, 侯成龙

中国工程科学 ›› 2023, Vol. 25 ›› Issue (6) : 237-247.

PDF(3924 KB)
PDF(3924 KB)
中国工程科学 ›› 2023, Vol. 25 ›› Issue (6) : 237-247. DOI: 10.15302/J-SSCAE-2023.06.020
工程前沿

风光波动电源下质子交换膜电解水制氢技术发展与应用

作者信息 +

Hydrogen Production by Proton Exchange Membrane Water Electrolysis in the Presence of Wind-Solar Fluctuating Power Supply: Development and Application

Author information +
History +

摘要

发展具有波动性负荷跟随能力的质子交换膜(PEM)电解水技术,是实现可再生能源耦合电解水制氢、促进可再生能源消纳的有效途径。本文梳理了风电耦合制氢、光伏发电耦合制氢等可再生电力制氢场景,分析了可再生能源的波动特性;从风光波动电源对电解池影响显著、风光波动电源加速电解池部件衰减、风光波动电源模拟方式三方面,详细阐述了PEM电解水制氢的基本特性以及研究进展;进一步讨论了PEM电解槽技术研发、PEM电解槽制氢技术发展方向。在把握风光耦合制氢现状及经济性、明晰风光波动电源电解水制氢产业应用态势的基础上,提出了深化研究高效电解池的基础科学问题和核心部件、进一步降低制氢成本、开展风光耦合制氢优化布局和制度保障研究等发展建议,以期促进可再生能源制氢产业的高质量发展。

Abstract

Developing the proton exchange membrane (PEM) water electrolysis technology with flexibility in a wider load is an effective pathway to couple renewable energies with water electrolysis for hydrogen production and to achieve renewable energy consumption. This study first reviews scenarios of hydrogen production through the coupling of renewable electricity such as wind and photovoltaic power with fluctuating loads, and analyzes the fluctuation characteristics of renewable energy. Subsequently, it elaborates on the basic characteristics and research progress of water electrolysis for hydrogen production from three aspects: effect of fluctuating power on electrolysis cells, accelerated degradation of electrolysis components, and simulation methods for fluctuating power. Furthermore, the research and development directions of PEM electrolysis cell technology and PEM electrolysis for hydrogen production are explored. The current status and economic feasibility of wind-solar-coupled hydrogen production as well as the industrial application trends of hydrogen production under fluctuating power are clarified. Finally, we propose the following suggestions: (1) deepening the research of fundamental scientific issues and core components of electrolysis cells, (2) further reducing hydrogen production costs, and (3) optimizing the layout of wind-solar-coupled hydrogen production and institutional guarantee.

关键词

可再生电力 / 风光波动电源 / 电解水制氢 / 质子交换膜

Keywords

renewable power / fluctuating power supply / water electrolysis for hydrogen production / proton exchange membrane

引用本文

导出引用
丁历威, 彭笑东, 侯继彪. 风光波动电源下质子交换膜电解水制氢技术发展与应用. 中国工程科学. 2023, 25(6): 237-247 https://doi.org/10.15302/J-SSCAE-2023.06.020

参考文献

[1]
程文姬, 赵磊, 郗航, 等. “十四五” 规划下氢能政策与电解水制氢研究 [J]. 热力发电, 2022, 51(11): 181‒188.
[2]
The role of CCUS in low-carbon power systems [EB/OL]. (2020-06-15)[2023-10-15]. https://www.iea.org/reports/the-role-of-ccus-in-low-carbon-power-systems.
[3]
Akinyele D O, Rayudu R K. Review of energy storage technologies for sustainable power networks [J]. Sustainable Energy Technologies and Assessments, 2014, 8: 74‒91.
[4]
Yang W, Sun L, Tang J, et al. Multiphase fluid dynamics and mass transport modeling in a porous electrode toward hydrogen evolution reaction [J]. Industrial & Engineering Chemistry Research, 2022, 61: 8323‒8332.
[5]
Zhou P F, Wong P K, Niu P D, et al. Anodized AlCoCrFeNi high-entropy alloy for alkaline water electrolysis with ultra-high performance [J]. Science China Materials, 2023, 66(3): 1033‒1041.
[6]
顾方伟, 杨雪, 林伟. 质子交换膜电解水氧化铱析氧催化剂的研究进展 [J]. 石油炼制与化工, 2022, 53(9): 115‒122.
[7]
Guo D D, Yu H M, Chi J. et al. Self-supporting NiFe LDHs@Co-OH-CO3 nanorod array electrode for alkaline anion exchange membrane water electrolyzer [J]. Journal of Electrochemistry, 2022, 28(9): 2214003.
[8]
张玉魁, 陈换军, 孙振新, 等. 高温固体氧化物电解水制氢效率与经济性 [J]. 广东化工, 2021, 48(18): 3‒6, 24.
[9]
温昶, 张博涵, 王雅钦, 等. 高效质子交换膜电解水制氢技术研究进展 [J]. 华中科技大学学报 (自然科学版), 2023, 51(1): 111‒122.
[10]
张立栋, 陈怡冰, 龚明, 等. 质子交换膜电解水制氢影响因素的过程模拟 [J]. 综合智慧能源, 2022, 44(5): 88‒94.
[11]
郭秀盈, 李先明, 许壮, 等. 可再生能源电解制氢成本分析 [J]. 储能科学与技术, 2020, 9(3): 688‒695.
[12]
葛磊蛟, 崔庆雪, 李明玮, 等. 风光波动性电源电解水制氢技术综述 [J]. 综合智慧能源, 2022, 44(5): 1‒14.
[13]
Huang C J, Zong Y, You S, et al. Cooperative control of wind-hydrogen-SMES hybrid systems for fault-ride-through improvement and power smoothing [J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8): 1‒7.
[14]
张娜, 葛磊蛟. 基于SOA优化的光伏短期出力区间组合预测 [J]. 太阳能学报, 2021, 42(5): 252‒259.
[15]
Sahin M E, Okumus H İ, Aydemir M T. Implementation of an electrolysis system with DC/DC synchronous buck converter [J]. International Journal of Hydrogen Energy, 2014, 39(13): 6802‒6812.
[16]
Garrigós A, Lizán J L, Blanes J M, et al. Combined maximum power point tracking and output current control for a photovoltaic-electrolyser DC/DC converter [J]. International Journal of Hydrogen Energy, 2014, 39(36): 20907‒20919.
[17]
Jia J Y, Seitz L C, Benck J D, et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30% [J]. Nature Communications, 2016, 7: 13237.
[18]
Sørensen P, Hansen A D, Rosas P A C. Wind models for simulation of power fluctuations from wind farms [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12/13/14/15): 1381‒1402.
[19]
Nanahara T, Asari M, Sato T, et al. Smoothing effects of distributed wind turbines. Part 1. Coherence and smoothing effects at a wind farm [J]. Wind Energy, 2004, 7(2): 61‒74.
[20]
Harrouni S, Guessoum A, Maafi A. Classification of daily solar irradiation by fractional analysis of 10-Min-means of solar irradiance [J]. Theoretical and Applied Climatology, 2005, 80(1): 27‒36.
[21]
Tomson T, Tamm G. Short-term variability of solar radiation [J]. Solar Energy, 2006, 80(5): 600‒606.
[22]
Gandía L M, Oroz R, Ursúa A, et al. Renewable hydrogen production: Performance of an alkaline water electrolyzer working under emulated wind conditions [J]. Energy & Fuels, 2007, 21(3): 1699‒1706.
[23]
Schalenbach M, Carmo M, Fritz D L, et al. Pressurized PEM water electrolysis: Efficiency and gas crossover [J]. International Journal of Hydrogen Energy, 2013, 38(35): 14921‒14933.
[24]
Schalenbach M, Stolten D. High-pressure water electrolysis: Electrochemical mitigation of product gas crossover [J]. Electrochimica Acta, 2015, 156: 321‒327.
[25]
Stansberry J M, Brouwer J. Experimental dynamic dispatch of a 60 kW proton exchange membrane electrolyzer in power-to-gas application [J]. International Journal of Hydrogen Energy, 2020, 45(16): 9305‒9316.
[26]
Bamisile O, Cai D S, Oluwasanmi A, et al. Comprehensive assessment, review, and comparison of AI models for solar irradiance prediction based on different time/estimation intervals [J]. Scientific Reports, 2022, 12: 9644.
[27]
Lin M Y, Hourng L W. Effects of magnetic field and pulse potential on hydrogen production via water electrolysis [J]. International Journal of Energy Research, 2014, 38(1): 106‒116.
[28]
Rocha F, de Radiguès Q, Thunis G, et al. Pulsed water electrolysis: A review [J]. Electrochimica Acta, 2021, 377: 138052.
[29]
Frensch S H, Fouda-Onana F, Serre G, et al. Influence of the operation mode on PEM water electrolysis degradation [J]. International Journal of Hydrogen Energy, 2019, 44(57): 29889‒29898.
[30]
Rakousky C, Reimer U, Wippermann K, et al. An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis [J]. Journal of Power Sources, 2016, 326: 120‒128.
[31]
Rakousky C, Reimer U, Wippermann K, et al. Polymer electrolyte membrane water electrolysis: Restraining degradation in the presence of fluctuating power [J]. Journal of Power Sources, 2017, 342: 38‒47.
[32]
Grigoriev S A, Dzhus K A, Bessarabov D G, et al. Failure of PEM water electrolysis cells: Case study involving anode dissolution and membrane thinning [J]. International Journal of Hydrogen Energy, 2014, 39(35): 20440‒20446.
[33]
Lettenmeier P, Wang R, Abouatallah R, et al. Durable membrane electrode assemblies for proton exchange membrane electrolyzer systems operating at high current densities [J]. Electrochimica Acta, 2016, 210: 502‒511.
[34]
Cherevko S, Geiger S, Kasian O, et al. Oxygen evolution activity and stability of iridium in acidic media. Part 1. Metallic iridium [J]. Journal of Electroanalytical Chemistry, 2016, 773: 69‒78.
[35]
Siracusano S, Baglio V, Van Dijk N, et al. Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer [J]. Applied Energy, 2017, 192: 477‒489.
[36]
Gago A S, Bürkle J, Lettenmeier P, et al. Degradation of proton exchange membrane (PEM) electrolysis: The influence of current density [J]. ECS Transactions, 2018, 86(13): 695‒700.
[37]
Khatib F N, Wilberforce T, Ijaodola O, et al. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review [J]. Renewable and Sustainable Energy Reviews, 2019, 111: 1‒14.
[38]
Feng Q, Yuan X Z, Liu G Y, et al. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies [J]. Journal of Power Sources, 2017, 366: 33‒55.
[39]
Wang X Y, Zhang L S, Li G F, et al. The influence of Ferric ion contamination on the solid polymer electrolyte water electrolysis performance [J]. Electrochimica Acta, 2015, 158: 253‒257.
[40]
Marocco P, Sundseth K, Aarhaug T, et al. Online measurements of fluoride ions in proton exchange membrane water electrolysis through ion chromatography [J]. Journal of Power Sources, 2021, 483: 229179.
[41]
Chandesris M, Médeau V, Guillet N, et al. Membrane degradation in PEM water electrolyzer: Numerical modeling and experimental evidence of the influence of temperature and current density [J]. International Journal of Hydrogen Energy, 2015, 40(3): 1353‒1366.
[42]
Gago A S, Ansar S A, Saruhan B, et al. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers [J]. Journal of Power Sources, 2016, 307: 815‒825.
[43]
Price E. Durability and degradation issues in PEM electrolysis cells and its components [J]. Johnson Matthey Technology Review, 2017, 61(1): 47‒51.
[44]
Alia S M, Stariha S, Borup R L. Electrolyzer durability at low catalyst loading and with dynamic operation [J]. Journal of the Electrochemical Society, 2019, 166(15): F1164‒F1172.
[45]
Weiß A, Siebel A, Bernt M, et al. Impact of intermittent operation on lifetime and performance of a PEM water electrolyzer [J]. Journal of the Electrochemical Society, 2019, 166(8): F487‒F497.
[46]
Siracusano S, Van Dijk N, Backhouse R, et al. Degradation issues of PEM electrolysis MEAs [J]. Renewable Energy, 2018, 123: 52‒57.
[47]
Wang T Z, Cao X J, Jiao L F. PEM water electrolysis for hydrogen production: Fundamentals, advances, and prospects [J]. Carbon Neutrality, 2022, 1(1): 21.
[48]
Ayers K. High efficiency PEM water electrolysis: Enabled by advanced catalysts, membranes, and processes [J]. Current Opinion in Chemical Engineering, 2021, 33: 100719.
[49]
Park J, Kang Z Y, Bender G, et al. Roll-to-roll production of catalyst coated membranes for low-temperature electrolyzers [J]. Journal of Power Sources, 2020, 479: 228819.
[50]
Lickert T, Fischer S, Young J L, et al. Advances in benchmarking and round robin testing for PEM water electrolysis: Reference protocol and hardware [J]. Applied Energy, 2023, 352: 121898.
[51]
刘玮, 万燕鸣, 熊亚林, 等. 碳中和目标下电解水制氢关键技术及价格平准化分析 [J]. 电工技术学报, 2022, 37(11): 2888‒2896.
[52]
Yates J, Daiyan R, Patterson R, et al. Techno-economic analysis of hydrogen electrolysis from off-grid stand-alone photovoltaics incorporating uncertainty analysis [J]. Cell Reports Physical Science, 2020, 1(10): 100209.
[53]
颜卓勇, 孔祥威. 非并网风电电解水制氢系统及应用研究 [J]. 中国工程科学, 2015, 17(3): 30‒34.
基金
国网科技项目 (5211DS22000N)
PDF(3924 KB)

Accesses

Citation

Detail

段落导航
相关文章

/