
高端光学元件超精密加工技术与装备发展研究
蒋庄德, 李常胜, 孙林, 段端志, 康城玮, 陈杉杉, 林启敬, 杨树明
中国工程科学 ›› 2023, Vol. 25 ›› Issue (1) : 131-141.
高端光学元件超精密加工技术与装备发展研究
Ultra-Precision Machining Technology and Equipment for High-End Optical Elements
高端光学元件是决定高端装备性能水平的核心零件,研究高端光学元件超精密加工技术与装备发展,对于实施制造强国战略、满足高端装备产业需求具有积极意义。本文剖析了光学元件超精密加工方法与装备、高性能基础部件、超精密光学加工中的测量方法与装备等的发展情况,凝练了精度与尺寸极端化、形状与性能一体化、加工工艺复合化、加工与检测一体化、装备与工艺智能化等发展趋势。通过广泛的行业调研和研讨,从需求、目标、产品、关键技术、应用示范、支撑保障等层次着手,形成了面向2035 年我国高端光学元件超精密制造技术路线图。针对性提出了优化创新体系设置、组织优势资源成立技术联盟,加大资源保障力度、布局基础研究和技术攻关计划,加强人才培育、构建梯队并扩大队伍规模,筑牢产业发展基础、培育龙头企业和专精特新“小巨人”企业等发展建议,以期促进高端光学元件加工产业提升与高质量发展。
High-end optical elements determine the performance of high-end equipment. Researching the ultra-precision machining technology and equipment for high-end optical elements is crucial for strengthening China's manufacturing industry and satisfying the requirements of the high-end equipment industry. In this study, the ultra-precision machining methods and equipment for optical elements, high-performance basic components, and measurement methods and equipment used in ultra-precision optical machining are analyzed. Five development trends are summarized including extremalization of precision and size, integration of shape and performance, compounding of machining technologies, integration of machining and measurement, and intellectualization of equipment and processes. Through extensive survey and discussions, a technology roadmap for ultra-precision manufacturing of high-end optical elements by 2035 is proposed from the aspects of demand, goals, products, key technologies, application demonstrations, and guarantees. Furthermore, several development suggestions are proposed, including (1) optimizing the innovation system and establishing technical alliances by organizing superior resources, (2) increasing resource guarantees and laying out plans on basic and technical research,(3) strengthening talent cultivation to expand the scale of the multi-level talent team, and (4) building a solid foundation for industrial development and cultivating small-sized leading enterprises.
光学元件 / 精密制造 / 超精密机床 / 超精密加工 / 光学加工
optical element / precision manufacturing / ultra-precision machine tool / ultra-precision machining / optical fabrication
[1] |
Campbell J H, Hawley-Fedder R, Stolz C J, et al. NIF optical materials and fabrication technologies: An overview [C]. San Jose: International Society for Optics and Photonics, 2004.
|
[2] |
江少恩, 丁永坤, 缪文勇, 等. 我国激光惯性约束聚变实验研究进展 [J]. 中国科学: 物理学力学天文学, 2009, 3911: 1571‒1583.
|
[3] |
Gopalaswamy V, Betti R, Knauer J P, et al. Tripled yield in direct-drive laser fusion through statistical modeling [J]. Nature, 2019, 565(7741): 581‒586.
|
[4] |
Schmitt J H M M, Lemen J R, Zarro D. A solar flare observed with the SMM and Einstein satellites [J]. Solar Physics, 1989, 121(1): 361‒373.
|
[5] |
李大庆. 慧眼卫星成功进行X射线脉冲星导航在轨实验 [J]. 空间科学学报, 2019 5: 565.
|
[6] |
Yao Y W, Chalifoux B, Heilmann R K, et al. Progress of coating stress compensation of silicon mirrors for Lynx x-ray telescope mission concept using thermal oxide patterning method [J]. Journal of Astronomical Telescopes Instruments and Systems, 2019, 5 (2): 1‒10.
|
[7] |
Civitani M M, Parodi G, Toso G, et al. Progress on high-resolution thin full monolithic shells made of glass for Lynx [C]. San Diego: Conference on Optics for EUV, X-Ray, and Gamma-Ray Astronomy, 2021.
|
[8] |
Levinson H J. High-NA EUV lithography: Current status and outlook for the future [J]. Japanese Journal of Applied Physics, 2022, 61: 1‒12.
|
[9] |
Martin L, Peter K, Hans-Juergen M, et al. Optics for EUV production [J]. Proceedings of SPIE‒The International Society for Optical Engineering, 2010, 7636(1): 1‒12.
|
[10] |
张德福, 李显凌, 芮大为, 等. 193 nm投影光刻物镜光机系统关键技术研究进展 [J]. 中国科学: 技术科学, 2017, 476: 565‒581.
|
[11] |
李国杰. "中兴事件" 给科技工作的启示 [J]. 科技导报, 2018, 3613: 1.
|
[12] |
王磊, 卢秉恒. 中国工作母机产业发展研究 [J]. 中国工程科学, 2020, 222: 29‒37.
|
[13] |
蔡锐龙, 李晓栋, 钱思思. 国内外数控系统技术研究现状与发展趋势 [J]. 机械科学与技术, 2016, 354: 493‒500.
|
[14] |
孟博洋, 李茂月, 刘献礼, 等. 机床智能控制系统体系架构及关键技术研究进展 [J]. 机械工程学报, 2021, 579: 147‒166.
|
[15] |
Geng Z C, Tong Z, Jiang X Q. Review of geometric error measurement and compensation techniques of ultra-precision machine tools [J]. Light: Advanced Manufacturing, 2021, 2(2): 211‒227.
|
[16] |
房丰洲. 原子及近原子尺度制造——制造技术发展趋势 [J]. 中国机械工程, 2020, 319: 1009‒1021.
|
[17] |
郭东明, 孙玉文, 贾振元. 高性能精密制造方法及其研究进展 [J]. 机械工程学报, 2014, 5011: 119‒134.
|
[18] |
郭东明. 高性能精密制造 [J]. 中国机械工程, 2018, 297: 757‒765.
|
[19] |
臧冀原, 刘宇飞, 王柏村, 等. 面向2035的智能制造技术预见和路线图研究 [J]. 机械工程学报, 2022, 584: 285‒304.
|
[20] |
前瞻产业研究院. 2022—2027中国光学测试仪器行业市场前瞻与投资规划分析报告 [R]. 深圳: 前瞻产业研究院, 2022.
|
/
〈 |
|
〉 |