
废塑料处置与利用技术研究进展
孙昱楠, 张帆, 李建园, 张闳楠, 李宁, 穆兰, 程占军, 颜蓓蓓, 陈冠益, 侯立安
中国工程科学 ›› 2023, Vol. 25 ›› Issue (3) : 182-196.
废塑料处置与利用技术研究进展
Advances in Waste Plastic Disposal and Utilization Technology
塑料制品是制造业的重要产品类型,产业发展质量与经济社会息息相关;在现阶段面临资源环境约束趋紧的背景下,合理处置并利用废塑料对经济和环境可持续发展至关重要。塑料制品种类更加丰富,相应处置技术及应用挑战不断更新,与产业高质量发展、严格的环保要求相叠加,凸显了系统梳理废塑料处置与利用研究进展的迫切性。本文就废塑料处置与利用技术体系进行了细致分类,主要从废塑料的机械处置、能源与资源转化、再生循环利用、处置与利用新技术4 个方面阐明了技术特点、适用条件、研究进展。在此基础上,借鉴发达国家已有经验、针对相关技术应用挑战,提出了从源头减量并鼓励再生塑料使用、强化废塑料分类回收力度、推动技术创新与成果转化等应对建议,以期为我国废塑料清洁处置与回收利用研究提供参考。
Plastic products are a significant component of the manufacturing industry and the plastic industry is closely related to economic and social development. As constraints from resources and environment tighten, rational disposal and utilization of waste plastics becomes crucial for the sustainable economic and environmental development. Currently, the variety of plastic products becomes abundant, and disposal technologies and application challenges are constantly updated. Considering the demand for highquality development of the industry and increasingly strict environmental protection requirements, a systematic analysis of the research progress of waste plastic disposal and utilization becomes urgent. In this study, the waste plastic disposal and utilization technologies are categorized into mechanical disposal of waste plastics, energy and resource conversion, regeneration recycling, and new technologies for disposal and utilization. These four types of technologies are expounded from the aspects of technical features, applicable conditions, and research progress. On the basis, facing the technical challenges and referring to the existing experience of developed countries, suggestions are proposed from the aspects of source reduction, sorted recycling of waste plastics, and technological innovation and transformation, hoping to provide a reference for the clean disposal and recycling of waste plastics in China.
废塑料 / 处置与利用 / 能源化 / 资源化 / 循环利用
waste plastic / disposal and utilization / energy utilization / resource utilization / recycling
[1] |
Chang S H. Plastic waste as pyrolysis feedstock for plastic oil production: A review [J]. Science of the Total Environment, 2023, 877: 162719.
|
[2] |
Chu S, Zhang B, Zhao X, al et. Photocatalytic conversion of plastic waste: From photodegradation to photosynthesis [J]. Advanced Energy Materials, 2022, 12(22): 1‒10.
|
[3] |
United Nations Environment Programme. From pollution to solution: A global assessment of marine litter and plastic pollution [EB/OL]. (2021-10-21)[2023-02-15]. https://www.unep.org/resources/pollution-solution-global-assessment-marine-litter-and-plastic-pollution.
|
[4] |
Bergmann M, Almroth B C, Brander S, al et. A global plastic treaty must cap production [J]. Science, 2022, 376(6592): 469‒470.
|
[5] |
Lamberti F M, Roman-Ramirez L A, Wood J. Recycling of bioplastics: Routes and benefits [J]. Journal of Polymers and the Environment, 2020, 28(10): 2551‒2571.
|
[6] |
China Business Industry Research Institute. Rubber and plastic products industry data [EB/OL]. (2022-01-20)[2023-02-15]. https://s.askci.com/data/economy/00024/.
|
[7] |
OECD. Global plastics outlook: Economic drivers, environmental impacts and policy options [EB/OL]. (2022-02-22)[2023-02-15]. https://finance.sina.com.cn/esg/ep/2022-03-22/doc-imcwiwss7342974.shtml.
|
[8] |
Ahamed A, Veksha A, Giannis A, al et. Flexible packaging plastic waste-environmental implications, management solutions, and the way forward [J]. Current Opinion in Chemical Engineering, 2021, 32: 100684.
|
[9] |
Zhi Z. What more can we do to prevent plastic waste from entering the sea? [EB/OL]. (2018-07-18)[2023-02-15]. https://cn.weforum.org/agenda/2018/07/17fede38-2084-488f-9c06-0a472908c100.
|
[10] |
钱秀娟 , 刘嘉唯 , 薛瑞 , 等 . 合成生物学助力废弃塑料资源生物解聚与升级再造 [J]. 合成生物学 , 2021 , 2 2 : 161 ‒ 180 .
|
[11] |
Cherubini F, Bargigli S, Ulgiati S. Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration [J]. Energy, 2009, 34(12): 2116‒2123.
|
[12] |
Song J X , Sun K, Huang Q X. The effect of thermal aging on the composition of pyrolysis oil fuel derived from typical waste plastics [J]. Fuel Processing Technology, 2021, 218: 106862.
|
[13] |
Hu S C, Ma X Q, Lin Y S, al et. Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste [J]. Energy Conversion and Management, 2015, 99: 112‒118.
|
[14] |
宋丽 , 周建军 , 张鹏 . 环境保护工程中废弃塑料处理技术 [J]. 山西化工 , 2021 , 41 3 : 229 ‒ 230 .
|
[15] |
范炜亮 , 王克俭 . 塑料包装废弃物的回收利用 [J]. 塑料包装 , 2021 , 31 1 : 53 ‒ 57 .
|
[16] |
郭毅 , 于春令 , 王磊 , 等 . 船舶固体垃圾处理方法及对策研究 [J]. 中国水运 , 2010 , 10 6 : 74 ‒ 76 .
|
[17] |
陈新恩 . 远洋船舶垃圾处理技术的研究 [J]. 广州航海学院学报 , 2013 , 21 4 : 5 ‒ 7 .
|
[18] |
Celauro C, Teresi R, Graziano F, al et. Preliminary evaluation of plasmix compound from plastics packaging waste for reuse in bituminous pavements [J]. Sustainability, 2021, 13(4): 2258.
|
[19] |
Rahman M H, R Bhoi P. An overview of non-biodegradable bioplastics [J]. Journal of Cleaner Production, 2021, 294: 126218.
|
[20] |
闭贤凤 . 废塑料资源化利用技术进展 [J]. 科技创新与应用 , 2019 23 : 156 ‒ 157 .
|
[21] |
程若瑶 . 微生物对塑料的降解 [J]. 化工管理 , 2020 5 : 101 ‒ 102 .
|
[22] |
M Guillaume S. Sustainable and degradable plastics [J]. Nature Chemistry, 2022, 14(3): 245‒246.
|
[23] |
Al-Salem. Plastics to energy: Fuel, chemicals, and sustainability implications [M]. Amsterdam: Elsevier Inc., 2019.
|
[24] |
Goto M. Subcritical and supercritical fluid technology for recycling waste plastics [J]. Journal of the Japan Petroleum Institute, 2016, 59(6): 254‒258.
|
[25] |
Liu Y G, Fan C, Zhang H, al et. The resource utilization of ABS plastic waste with subcritical and supercritical water treatment [J]. International Journal of Hydrogen Energy, 2019, 44(30): 15758‒15765.
|
[26] |
常凤 . 塑料的产量、性质与高炉喷吹技术 [C]. 贵阳 : 2019年全国高炉炼铁学术年会 , 2019 .
|
[27] |
侯明 . 高炉喷吹废塑料下的废旧塑料综合利用新方法 [J]. 资源节约与环保 , 2021 5 : 119 ‒ 120 .
|
[28] |
张妍 , 吴迪 , 李晨 , 等 . 半导体掺杂促进塑料可光降解性能的研究进展 [J]. 应用化工 , 2020 , 49 5 : 1274 ‒ 1277 .
|
[29] |
陈欢 , 万坤 , 牛波 , 等 . 废弃塑料化学回收及升级再造研究进展 [J]. 化工进展 , 2022 , 41 3 : 1453 ‒ 1469 .
|
[30] |
Jiao X C, Zheng K, Chen Q X, al et. Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions [J]. Angewandte Chemie‒International Edition, 2020, 59(36): 15497‒15501.
|
[31] |
Lewis S E, Wilhelmy B E, A Leibfarth F. Organocatalytic C—H fluoroalkylation of commodity polymers [J]. Polymer Chemistry, 2020, 11(30): 4914‒4919.
|
[32] |
Pathan S I, Arfaioli P, Bardelli T, al et. Soil pollution from micro- and nanoplastic debris: A hidden and unknown biohazard [J]. Sustainability, 2020, 12(18): 7255.
|
[33] |
张姗姗 , 王洋清 , 赵由才 , 等 . 垃圾填埋场中的塑料 ‒ 微塑料 ‒ 纳米塑料环境行为研究前瞻 [J]. 环境卫生工程 , 2021 , 29 3 : 58 ‒ 68 .
|
[34] |
Zhang F, Zhao Y T, Wang D B, al et. Current technologies for plastic waste treatment: A review [J]. Journal of Cleaner Production, 2021, 282: 124523.
|
[35] |
Rasool F N , Saavedra M A, Pamba S, al et. Isolation and characterization of human pathogenic multidrug resistant bacteria associated with plastic litter collected in Zanzibar [J]. Journal of Hazardous Materials, 2021, 405: 124591.
|
[36] |
Bläsing M, Amelung W. Plastics in soil: Analytical methods and possible sources [J]. Science of The Total Environment, 2018, 612: 422‒435.
|
[37] |
陈东兴 , 张亚峰 , 陈亮鸿 , 等 . 国内外海洋倾废管理的比较与探讨 [J]. 环境保护 , 2021 , 49 19 : 35 ‒ 39 .
|
[38] |
陈飞飞 . 海洋塑料垃圾防治的国际法制现状、问题与建议 [D]. 济南 : 山东大学 硕士学位论文 , 2020 .
|
[39] |
王慧卉 , 梁国正 . 塑料垃圾对海洋污染的影响及控制措施分析 [J]. 南通职业大学学报 , 2014 , 28 1 : 68 ‒ 72 .
|
[40] |
Yue X H, Zhang F S, Zhang C C, al et. Upcycling of blending waste plastics as zwitterionic hydrogel for simultaneous removal of cationic and anionic heavy metals from aqueous system [J]. Journal of Hazardous Materials, 2022, 432: 128746.
|
[41] |
Nations United. United Nations convention on the law of the sea [EB/OL]. (2022-04-15)[2023-02-15]. https://www.un.org/zh/documents/treaty/UNCLOS-1982.
|
[42] |
中华人民共和国国务院 . 中华人民共和国海洋倾废管理条例 [EBOL]. 2017-03-01 [ 2023-02-15 ]. http: www.gov.cngongbaocontent2017content_5219141.htm .
|
[43] |
Abukhettala M, Fall M. Geotechnical characterization of plastic waste materials in pavement subgrade applications [J]. Transportation Geotechnics, 2021, 27: 100472.
|
[44] |
王瑞良 . 用塑料废品建房铺路 [J]. 建筑工人 , 2016 . 37 2 : 55 .
|
[45] |
姚战 , 姚子豪 , 郑康 , 等 . 一种环保高性能塑胶跑道及其施工方法 : CN112030666A [P]. 2020-12-04 .
|
[46] |
Lu H Q, G Kazarian S. How does high-pressure CO2 affect the morphology of PCL/PLA blends? Visualization of phase separation using in situ ATR-FTIR spectroscopic imaging [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 243: 118760.
|
[47] |
Burlakovs J, Kriipsalu M, Porshnov D, al et. Gateway of landfilled plastic waste towards circular economy in Europe [J]. Separations, 2019, 6(2): 25.
|
[48] |
赵娟 . 废塑料回收利用的研究进展 [J]. 现代塑料加工应用 , 2020 , 32 4 : 60 ‒ 63 .
|
[49] |
简敏菲 , 饶丹 , 孙望舒 , 等 . 生活垃圾热解焚烧灰渣中微塑料与重金属的潜在生态风险 [C]. 西安 : 2019中国环境科学学会科学技术年会 , 2019 .
|
[50] |
杨占 , 吕凡 , 章骅 , 等 . 生活垃圾焚烧厂是塑料和微塑料的最终归宿吗? [J]. 环境卫生工程 , 2020 , 28 5 : 95 .
|
[51] |
张海雪 . 特征元素对生物质与塑料共气化产气特性的影响 [D]. 沈阳 : 沈阳航空航天大学 硕士学位论文 , 2012 .
|
[52] |
Shen Y F, Zhao R, Wang J F, al et. Waste-to-energy: Dehalogenation of plastic-containing wastes [J]. Waste Management, 2016, 49: 287‒303.
|
[53] |
轩书琴 . 乙烯法聚氯乙烯生产中焚烧废气的处理 [J]. 中国氯碱 , 2021 2 : 20 ‒ 21 .
|
[54] |
孙小东 , 曹鼎 , 胡倩倩 , 等 . 废弃塑料的化学回收资源化利用研究进展 [J]. 中国塑料 , 2021 , 35 8 : 44 ‒ 54 .
|
[55] |
周飞 , 彭剑峰 . 塑料热解制油技术研究进展 [J]. 塑料工业 , 2022 , 50 6 : 64 ‒ 69 .
|
[56] |
Li D, Lei S J, Wang P, al et. Study on the pyrolysis behaviors of mixed waste plastics [J]. Renewable Energy, 2021, 173: 662‒674.
|
[57] |
Kumagai S, Yoshioka T. Feedstock recycling via waste plastic pyrolysis [J]. Journal of the Japan Petroleum Institute, 2016, 59(6): 243‒253.
|
[58] |
Qureshi M S, Oasmaa A, Pihkola H, al et. Pyrolysis of plastic waste: Opportunities and challenges [J]. Journal of Analytical and Applied Pyrolysis, 2020, 152: 104804.
|
[59] |
Kusenberg M, Zayoud A, Roosen M, al et. A comprehensive experimental investigation of plastic waste pyrolysis oil quality and its dependence on the plastic waste composition [J]. Fuel Processing Technology, 2022, 227: 107090.
|
[60] |
Amutio M, Onaindi A, Lopez G, al et. Upgrading of tars from waste valorisation processes by hplc fractionation: Scale up from analytical to preparative [J]. Chemical Engineering Transactions, 2010, 21: 865‒870.
|
[61] |
Dyer A C, Nahil M A, T Williams P. Catalytic co-pyrolysis of biomass and waste plastics as a route to upgraded bio-oil [J]. Journal of the Energy Institute, 2021, 97: 27‒36.
|
[62] |
Ciuffi B, Chiaramonti D, Rizzo A M, al et. A critical review of SCWG in the context of available gasification technologies for plastic waste [J]. Applied Sciences, 2020, 10(18): 6307.
|
[63] |
Lopez G, Artetxe M, Alvarez J, al et. Recent advances in the gasification of waste plastics: A critical overview [J]. Renewable & Sustainable Energy Reviews, 2018, 82: 576‒596.
|
[64] |
Cudjoe D, Wang H. Plasma gasification versus incineration of plastic waste: Energy, economic and environmental analysis [J]. Fuel Processing Technology, 2022, 237: 107470.
|
[65] |
Luque R, Lin C S K, Wilson K, al et. Handbook of biofuels production: Processes and technologies [M]. Amsterdam: Elsevier Inc., 2016.
|
[66] |
Wu C F, T Williams P. A novel Ni-Mg-Al-CaO catalyst with the dual functions of catalysis and CO2 sorption for H2 production from the pyrolysis: Gasification of polypropylene [J]. Fuel, 2010, 89: 1435‒1441.
|
[67] |
Cagnetta G, Zhang K L, Zhang Q W, al et. Augmented hydrogen production by gasification of ball milled polyethylene with Ca(OH)2 and Ni(OH)2 [J]. Frontiers of Environmental Science & Engineering, 2019, 13: 11.
|
[68] |
Parrillo F, Ardolino F, Boccia C, al et. Co-gasification of plastics waste and biomass in a pilot scale fluidized bed reactor [J]. Energy, 2023, 273: 127220.
|
[69] |
Li J, Jiao L G, Tao J Y, al et. Can microwave treat biomass tar? A comprehensive study based on experimental and net energy analysis [J]. Applied Energy, 2020, 272: 115194.
|
[70] |
Chen G Y, Dong X S, Yan B B, al et. Photothermal steam reforming: A novel method for tar elimination in biomass gasification [J]. Applied Energy, 2022, 305: 117917.
|
[71] |
Lamba P, Kaur D P, Raj S, al et. Recycling/reuse of plastic waste as construction material for sustainable development: A review [J]. Environmental Science and Pollution Research, 2022, 29(57): 86156‒86179.
|
[72] |
Negoro S, Shibata N, Kato D, al et. X-ray crystallographic and mutational analysis of the NylC precursor: Catalytic mechanism of autocleavage and substrate hydrolysis of nylon hydrolase [J]. FEBS Journal, 2023, 2: 16755.
|
[73] |
任永琳 , 王达 , 刘合 , 等 . 聚乳酸水解机理及水解性能改进方法研究进展 [J]. 石油化工 , 2022 , 51 9 : 1129 ‒ 1136 .
|
[74] |
Wang Y Q, Zhang Y, Song H Y, al et. Zinc-catalyzed ester bond cleavage: Chemical degradation of polyethylene terephthalate [J]. Journal of Cleaner Production, 2019, 208: 1469‒1475.
|
[75] |
徐丽洁 , 刘豪杰 , 薛瑞 , 等 . 多学科交叉助力废塑料生物法循环回收利用的研究进展 [J]. 化工进展 , 2022 , 41 9 : 5029 ‒ 5036 .
|
[76] |
靳爱民 . 新的甲醇分解循环回收技术可以帮助解决塑料垃圾问题 [J]. 石油炼制与化工 , 2019 , 50 12 : 30 .
|
[77] |
Ali S S, Elsamahy T, Al-Tohamy R, al et. Plastic wastes biodegradation: Mechanisms, challenges and future prospects [J]. Science of the Total Environment, 2021, 780: 146590.
|
[78] |
Amobonye A, Bhagwat P, Singh S, al et. Plastic biodegradation: Frontline microbes and their enzymes [J]. Science of the Total Environment, 2021, 759: 143536.
|
[79] |
Moshood T D, Nawanir G, Mahmud F, al et. Biodegradable plastic applications towards sustainability: A recent innovations in the green product [J]. Cleaner Engineering and Technology, 2022, 6: 100404.
|
[80] |
Farzi A, Dehnad A, F Fotouhi A. Biodegradation of polyethylene terephthalate waste using streptomyces species and kinetic modeling of the process [J]. Biocatalysis and Agricultural Biotechnology, 2019, 17: 25‒31.
|
[81] |
Sangale M K, Shahnawaz M, B Ade A. Gas chromatography-mass spectra analysis and deleterious potential of fungal based polythene-degradation products [J]. Scientific Reports, 2019, 9: 1599.
|
[82] |
Lee S H, Song W S. Enzymatic hydrolysis of polylactic acid fiber [J]. Applied Biochemistry and Biotechnology, 2011, 164(1): 89‒102.
|
[83] |
Lee S H. Biodegradability of polylactic acid fabrics by enzyme hydrolysis and soil degradation [J]. Textile Coloration and Finishing, 2017, 29(4): 181‒194.
|
[84] |
Ren L, Men L, Zhang Z W, al et. Biodegradation of polyethylene by enterobacter sp. D1 from the guts of wax moth galleria mellonella [J]. International Journal of Environmental Research and Public Health, 2019, 16(11): 1941.
|
[85] |
Muhonja C N, Makonde H, Magoma G, al et. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya [J]. PLoS One, 2018, 13(7): e0198446.
|
[86] |
Abraham J, Ghosh E, Mukherjee P, al et. Microbial degradation of low density polyethylene [J]. Environmental Progress & Sustainable Energy, 2017, 36(1): 147‒154.
|
[87] |
Moharir R V, Kumar S. Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: A comprehensive review [J]. Journal of Cleaner Production, 2019, 208: 65‒76.
|
[88] |
Adamcová D, Vaverková M D, Masicek T, al et. Analysis of biodegrability of degradable/biodegradable plastic material in controlled composting environment [J]. Journal of Ecological Engineering, 2016, 17(4): 1‒10.
|
[89] |
Vaverková M D, Adamcová D. Degradation of biodegradable/degradable plastics in municipal solid-waste landfill [J]. Polish Journal of Environmental Studies, 2014, 23(4): 1071‒1078.
|
[90] |
Leejarkpai T, Suwanmanee U, Rudeekit Y, al et. Biodegradable kinetics of plastics under controlled composting conditions [J]. Waste Management, 2011, 31(6): 1153‒1161.
|
[91] |
Vaverková M D, Adamcová D, Kotovicová J, al et. Evaluation of biodegradability of plastics bags in composting conditions [J]. Ecological Chemistry and Engineering S, 2014, 21(1): 45‒57.
|
[92] |
Garcia-Depraect O, Lebrero R, Rodriguez-Vega S, al et. Biodegradation of bioplastics under aerobic and anaerobic aqueous conditions: Kinetics, carbon fate and particle size effect [J]. Bioresource Technology, 2022, 344: 126265.
|
[93] |
Ahmed J, Mulla M, Jacob H, al et. Polylactide/poly(ε-caprolactone)/zinc oxide/clove essential oil composite antimicrobial films for scrambled egg packaging [J]. Food Packaging and Shelf Life, 2019, 21: 100355.
|
[94] |
North E J, U Halden R. Plastics and environmental health: The road ahead [J]. Reviews on Environmental Health, 2013, 28(1): 1‒8.
|
[95] |
Meegoda J N, Li B, Patel K, al et. A review of the processes, parameters, and optimization of anaerobic digestion [J]. International Journal of Environmental Research and Public Health, 2018, 15(10): 2224.
|
[96] |
Anukam A, Mohammadi A, Naqvi M, al et. A review of the chemistry of anaerobic digestion: Methods of accelerating and optimizing process efficiency [J]. Processes, 2019, 7(8): 504.
|
[97] |
A Stagner J. Methane generation from anaerobic digestion of biodegradable plastics—A review [J]. International Journal of Environmental Studies, 2016, 73(3): 462‒468.
|
[98] |
Calabro P S, Folino A, Fazzino F, al et. Preliminary evaluation of the anaerobic biodegradability of three biobased materials used for the production of disposable plastics [J]. Journal of Hazardous Materials, 2020, 390: 121653.
|
[99] |
王峰 . 超高温和高温厌氧条件下聚乳酸塑料的降解 [J]. 环境工程学报 , 2018 , 12 1 : 304 ‒ 309 .
|
[100] |
Wang F, Hidaka T, Oishi T, al et. Degradation characteristics of polylactide in thermophilic anaerobic digestion with hyperthermophilic solubilization condition [J]. Water Science and Technology, 2011, 64(11): 2135‒2142.
|
[101] |
Bernat K, Kulikowska D, Wojnowska-Baryla I, al et. Thermophilic and mesophilic biogas production from PLA-based materials: Possibilities and limitations [J]. Waste Management, 2021, 119: 295‒305.
|
[102] |
Benn N, Zitomer D. Pretreatment and anaerobic co-digestion of selected PHB and PLA bioplastics [J]. Frontiers in Environmental Science, 2018, 5: 1‒10.
|
[103] |
Hobbs S R, Parameswaran P, Astmann B, al et. Anaerobic codigestion of food waste and polylactic acid: Effect of pretreatment on methane yield and solid reduction [J]. Advances in Materials Science and Engineering, 2019: 4715904.
|
[104] |
朱桂丹 , 陕洁 , 尹绚 , 等 . 塑料废弃物的管理及资源化利用 [J]. 广东化工 , 2021 , 48 16 : 170 ‒ 172 .
|
[105] |
Ye Q, Li Z, Liu J, al et. Waste ABS plastics used in electrical packaging appliances: Regeneration and properties [J]. Iranian Polymer Journal, 2021, 30(5): 445‒452.
|
[106] |
Qin Y, Dong L, Lu H, al et. Debromination process of Br-containing PS of E-wastes and reuse with virgin PS [J]. Journal of Hazardous Materials, 2022, 431: 128526.
|
[107] |
Muhamad M S, Salim M R, Lau W J, al et. A review on bisphenol A occurrences, health effects and treatment process via membrane technology for drinking water [J]. Environmental Science and Pollution Research, 2016, 23(12): 11549‒11567.
|
[108] |
Liu J J, Hou Q D, Ju M T, al et. Biomass pyrolysis technology by catalytic fast pyrolysis, Catalytic co-pyrolysis and microwave-assisted pyrolysis: A review [J]. Catalysts, 2020, 10(7): 742.
|
[109] |
Kumar S, Singh E, Mishra R, al et. Utilization of plastic wastes for sustainable environmental management: A review [J]. ChemSusChem, 2021, 14(19): 3985‒4006.
|
[110] |
Lahtela V, Hyvarinen M, Karki T. Composition of plastic fractions in waste streams: Toward more efficient recycling and utilization [J]. Polymers, 2019, 11(1): 69.
|
[111] |
Alassali A, Aboud N, Kuchta K, al et. Assessment of supercritical CO2 extraction as a method for plastic waste decontamination [J]. Polymers, 2020, 12(6): 1347.
|
[112] |
Wang T, Liu X Y, Huang S H, al et. Modelling co-gasification of plastic waste and lignin in supercritical water using reactive molecular dynamics simulations [J]. International Journal of Hydrogen Energy, 2022, 47(49): 21060‒21066.
|
[113] |
Wang T, Xu J M, Liu X Y, al et. Co-gasification of waste lignin and plastics in supercritical liquids: Comparison of water and carbon dioxide [J]. Journal of CO2 Utilization, 2022, 66: 102248.
|
[114] |
贾利军 , 王冰 , 孟淑敏 . 高炉喷吹废塑料工艺技术探讨 [J]. 工业炉 , 2015 , 37 2 : 19 ‒ 22 .
|
[115] |
Chu S, Zhang B W, Zhao X, al et. Photocatalytic conversion of plastic waste: From photodegradation to photosynthesis [J]. Advanced Energy Materials, 2022, 12(22): 2200435.
|
[116] |
王佚婷 . 光催化在有机合成反应中的应用研究进展 [J]. 中外能源 , 2021 , 26 6 : 25 ‒ 31 .
|
[117] |
Yousif E, Haddad R. Photodegradation and photostabilization of polymers, especially polystyrene: Review [J]. Springerplus, 2013, 2: 398.
|
[118] |
Bracco P, Costa L, Luda M P, al et. A review of experimental studies of the role of free-radicals in polyethylene oxidation [J]. Polymer Degradation and Stability, 2018, 155: 67‒83.
|
[119] |
Li J, Lam J C W, L W Z, al et. Occurrence and distribution of photoinitiator additives in paired maternal and cord plasma in a south China population [J]. Environmental Science & Technology, 2019, 53(18): 10969‒10977.
|
[120] |
张闳楠 , 孙昱楠 , 宋玉茹 , 等 . 光固化3D打印废塑料来源、处置技术和环境影响 [JOL]. 环境科学 , [ 2023-01-10 ]. https:doi.org10.13227j.hjkx.202210351 .
|
[121] |
L Andrady A. The plastic in microplastics: A review [J]. Marine Pollution Bulletin, 2017, 119(1): 12‒22.
|
[122] |
李茂东 , 辛明亮 , 史君林 , 等 . 老化环境下压力容器用塑料力学性能变化规律研究 [J]. 塑料工业 , 2018 , 46 1 : 82 ‒ 86 .
|
[123] |
舒伟 . 光降解塑料的降解原理及其应用 [J]. 印刷质量与标准化 , 2011 5 : 8 ‒ 11 .
|
[124] |
Lee Q Y, Li H. Photocatalytic degradation of plastic waste: A mini review [J]. Micromachines, 2021, 12(8): 907.
|
[125] |
Andrady A L, Barnes P W, Bornman, J F, al et. Oxidation and fragmentation of plastics in a changing environment: From UV-radiation to biological degradation [J]. Science of the Total Environment, 2022, 851: 158022.
|
[126] |
Pichler C M, Bhattacharjee S, Rahaman M, al et. Conversion of polyethylene waste into gaseous hydrocarbons via integrated tandem chemical-photo/electrocatalytic processes [J]. ACS Catalysis, 2021, 11(15): 9159‒9167.
|
[127] |
Jiao X C, Zheng K, Chen Q X, al et. Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions [J]. Angewandte Chemie-International Edition, 2020, 59(36): 15497‒15501.
|
[128] |
Zhou H, Ren Y, Li Z H, al et. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel [J]. Nature Communications, 2021, 12(1): 4679.
|
[129] |
Zheng K, Wu Yang, Hu Z X, al et. Progress and perspective for conversion of plastic wastes into valuable chemicals [J]. Chemical Society Reviews, 2023, 52(1): 8‒29.
|
[130] |
Wang J Y, Li X, Wang M L, al et. Electrocatalytic valorization of poly (ethylene terephthalate) plastic and CO2 for simultaneous production of formic acid [J]. ACS Catalysis, 2022, 12(11): 6722‒6728.
|
[131] |
陈祥 . 日本制定"塑料资源循环战略"的原因及影响 [J]. 日本问题研究 , 2019 , 33 6 : 29 ‒ 41 .
|
[132] |
环保技术国际智汇平台 . 日本的海洋塑料污染政策 [EBOL]. 2020-11-10 [ 2023-05-03 ]. https:www.sohu.coma430941644_99899283 .
|
[133] |
Office of the Spokesperson. Actions to address plastic pollution [EB/OL]. (2022-02-28)[2023-05-03]. https://www.state.gov/u-s-actions-to-address-plastic-pollution/.
|
[134] |
石毅 . 地球的一半, 各国治理塑料污染给了我们什么启发? [EBOL]. 2020-08-05 [ 2023-05-03 ]. https:www.thepaper.cnnewsDetail_forward_8574415 .
|
/
〈 |
|
〉 |