废弃防水卷材资源化基本问题与发展路径研究

肖建庄, 俞才华, 肖绪文, 丁陶, 张勇

中国工程科学 ›› 2023, Vol. 25 ›› Issue (5) : 210-221.

PDF(1535 KB)
PDF(1535 KB)
中国工程科学 ›› 2023, Vol. 25 ›› Issue (5) : 210-221. DOI: 10.15302/J-SSCAE-2023.07.029
工程管理
Orginal Article

废弃防水卷材资源化基本问题与发展路径研究

作者信息 +

Fundamental Problems and Development Paths for Reclamation of Waste Waterproof Membranes

Author information +
History +

摘要

建筑固体废物(固废)资源化是建筑业高质量发展的必然要求,在“双碳”战略目标的驱动下进一步提升建筑固废资源化利用率迫在眉睫。废弃防水材料作为建筑固废的重要组成部分,其资源化研究基本处于空白状态。本文测算了2005—2021年我国防水材料总产量(2.983×1010 m2)、防水卷材总产量(1.89×1010 m2),形成了防水材料资源化的主体是防水卷材资源化的基本判断。应对国家绿色低碳发展形势,提出了针对防水卷材的减量化、重复利用、循环再生(3R)资源化路径,防水卷材“基因组”、多尺度 / 多场景分析、机器学习预测相结合的高性能防水卷材研发理念,明晰了以体系拆解为核心的防水卷材重复利用模式、以“分类”“分级”“分解”为关键构成的废弃防水卷材循环再生策略。应以再生防水卷材为主攻方向,推动全再生防水卷材、增材制造技术的深入研究和创新应用。面向防水卷材资源化未来发展,“原料‒产品”“产品‒工程”是亟待攻克的关键环节,需要管理部门、学术界、工业界共同努力。

Abstract

The reclamation of construction solid wastes is crucial for the high-quality development of the construction industry and it is urgent to further improve the utilization rate of the construction solid wastes to achieve the carbon peaking and carbon neutralization goals. Waste waterproof materials are an important component of the construction solid wastes; however, research on the utilization of these materials is almost blank in China. As calculated in this study, the total output of waterproof materials in China was 2.983 × 1010 m2 during 2005‒2021 and that of waterproof membranes was 1.89 × 1010 m2, indicating that waterproof membranes are the main body for waterproof material recycling. In response to the national green and low-carbon development situation, a utilization path for “reducing, reusing, and recycling” (3R) the waterproof membranes is proposed as well as a high-performance waterproof membrane research and development concept that combines waterproof membrane “genome”, multi-scale/multi-scenario analysis, and machine learning prediction. A waterproof membrane reuse mode with system disassembly as the core is clarified as well as a recycling strategy with classification, gradation, and deconstruction as the core. Moreover, the in-depth research and innovative application of fully recycled waterproof membranes and additive manufacturing technology should be promoted. The transformation of recycled waterproof membranes to products and the engineering application of these products are major challenges to be addressed in the future, which requires joint efforts of the management departments, academia, and industry.

关键词

废弃防水卷材 / 资源化利用 / 减量化 / 重复利用 / 循环再生 / 全再生防水卷材

Keywords

waste waterproof membrane / resource utilization / reduce / reuse / recycle / fully recycled waterproof membrane

引用本文

导出引用
肖建庄, 俞才华, 肖绪文. 废弃防水卷材资源化基本问题与发展路径研究. 中国工程科学. 2023, 25(5): 210-221 https://doi.org/10.15302/J-SSCAE-2023.07.029

参考文献

[1]
肖建庄 , 夏冰 , 肖绪文 , 等‍‍ . 混凝土结构低碳设计理论前瞻 [J]‍. 科学通报 , 2022 , 67 28-29 : 3425 ‒ 3438 ‍.
[2]
肖建庄 , 张航华 , 唐宇翔 , 等‍ . 废弃混凝土再生原理与再生混凝土基本问题 [J]‍. 科学通报 , 2022 , 68 5 : 510 ‒ 523 ‍.
[3]
中国建筑节能协会建筑能耗与碳排放数据专委会‍ . 2021中国建筑能耗与碳排放研究报告: 省级建筑碳达峰形势评估 [R]‍. 北京 : 中国建筑节能协会建筑能耗与碳排放数据专委会 , 2021 ‍.
[4]
Xiao J Z, Shen J Y, Bai M Y, al et‍. Reuse of construction spoil in China: Current status and future opportunities [J]‍. Journal of Cleaner Production, 2021, 290: 125742‍.
[5]
Liu Q, Singha A, Xiao J Z, al et‍. Workability and mechanical properties of mortar containing recycled sand from aerated concrete blocks and sintered clay bricks [J]‍. Resources, Conservation and Recycling, 2020, 157: 104728‍.
[6]
Dang J T, Hao L K, Xiao J Z , al et‍. Utilization of excavated soil and sewage sludge for green lightweight aggregate and evaluation of its influence on concrete properties [J]‍. Journal of Cleaner Production, 2023, 390: 136061‍.
[7]
Hu K, Yu C H, Yang Q L, al et‍. Mechanistic study of graphene reinforcement of rheological performance of recycled polyethylene modified asphalt: A new observation from molecular dynamics simulation [J]‍. Constr Build Mater, 2020, 320: 126263‍.
[8]
刘娜娜‍ . 废旧防水卷材用于改性沥青的研究 [D]‍. 青岛 : 中国石油大学 华东 硕士学位论文 , 2017 ‍.
[9]
张敏‍ . 一种利用沥青类废旧防水卷材改性后生产的防水卷材制备方法 : CN112609476A [P]‍. 2021-04-06 ‍.
[10]
马峰 , 冯乔 , 傅珍 , 等‍ . 一种回收防水卷材再利用的方法及改性沥青混合料 : CN107879674A [P]‍. 2017-11-22 ‍.
[11]
肖建庄‍ . 建筑防水基础 [M]‍. 北京 : 中国建筑工业出版社 , 2020 ‍.
[12]
中华人民共和国住房和城乡建设部 , 国家市场监督管理总局‍ . 建筑与市政工程防水通用规范 GB 55030—2022 [S]‍. 北京 : 中国建筑工业出版社 , 2022 ‍.
[13]
许春明‍ . 三元乙丙橡胶防水卷材火灾特性实验研究 [D]‍. 合肥 : 中国科学技术大学 硕士学位论文 , 2010 ‍.
[14]
中国建筑防水协会‍ . 中国建筑防水行业2005年度发展报告 [R]‍. 北京 : 中国建筑防水协会 , 2005 ‍.
[15]
中国建筑防水协会‍ . 中国建筑防水行业2006年度发展报告 [R]‍. 北京 : 中国建筑防水协会 , 2006 ‍.
[16]
中国建筑防水协会‍ . 中国建筑防水行业2007年度发展报告 [R]‍. 北京 : 中国建筑防水协会 , 2007 ‍.
[17]
中国建筑防水协会‍ . 中国建筑防水行业2008年度发展报告 [R]‍. 北京 : 中国建筑防水协会 , 2008 ‍.
[18]
中国建筑防水协会‍ . 中国建筑防水行业2009年度发展报告 [R]‍. 北京 : 中国建筑防水协会 , 2009 ‍.
[19]
中国建筑防水协会‍ . 中国建筑防水行业2010年度发展报告 [R]‍. 北京 : 中国建筑防水协会 , 2010 ‍.
[20]
中国建筑防水协会‍ . 中国建筑防水行业2011年度发展报告 [R]‍. 北京 : 中国建筑防水协会 , 2011 ‍.
[21]
中国建筑防水协会‍ . 中国建筑防水行业2012年度发展报告 [R]‍. 北京 : 中国建筑防水协会 , 2012 ‍.
[22]
中国建筑防水协会‍ . 中国建筑防水行业2013年度发展报告 [R]‍. 北京 : 中国建筑防水协会 , 2013 ‍.
[23]
中国建筑防水协会‍ . 中国建筑防水行业2014年度发展报告 [R]‍. 北京 : 中国建筑防水协会 , 2014 ‍.
[24]
中国建筑防水协会‍ . 中国建筑防水行业2015年度发展报告 [R]‍. 北京 : 中国建筑防水协会 , 2015 ‍.
[25]
中国建筑防水协会‍ . 中国建筑防水行业2016年度发展报告 [R]‍. 北京 : 中国建筑防水协会 , 2016 ‍.
[26]
中国建筑防水协会‍ . 中国建筑防水行业2017年度发展报告 [R]‍. 北京 : 中国建筑防水协会 , 2017 ‍.
[27]
中国建筑防水协会‍ . 中国建筑防水行业2018年度发展报告 [R]‍. 北京 : 中国建筑防水协会 , 2018 ‍.
[28]
中国建筑防水协会‍ . 中国建筑防水行业2019年度发展报告 [R]‍. 中国建筑防水协会 , 2019 ‍.
[29]
中国建筑防水协会‍ . 中国建筑防水行业2020年度发展报告 [R]‍. 北京 : 中国建筑防水协会 , 2020 ‍.
[30]
中国建筑防水协会‍ . 中国建筑防水行业2021年度发展报告 [R]‍. 北京 : 中国建筑防水协会 , 2021 ‍.
[31]
Monica P, Maurizia S, Domenico C, Sandra V‍. Utilization of Tannery Wastewaters Sludge Ash in Waterproofing Membrane: a Technical and Environmental feasibility Study [J]‍. Advanced Materials Research, 2014, 849: 397‒404‍.
[32]
Liu Y K, Zhang Q S, Liu R T, al et‍. Compressive stress-hydrothermal aging behavior and constitutive model of shield tunnel EPDM rubber material [J]‍. Construction and Building Materials, 2022, 320: 126298‍.
[33]
Ivanic A, Lubej S, Durability and degradation of PVC-P roofing membrane—Example of dynamic fatigue testing [J]‍. Polymers, 2022, 14(7): 1312‍.
[34]
Silva R R, Lopes J G, R‍ Correia J. The effect of wind suction on flat roofs: An experimental and analytical study of mechanically fastened waterproofing systems [J]‍. Construction and Building Materials, 2010, 24(1): 105‒112‍.
[35]
Hailesilassie B W, Hean S, N‍ Partl M. Testing of blister propagation and peeling of orthotropic bituminous waterproofing membranes [J]‍. Materials and Structures, 2015, 48: 1095‒1108‍.
[36]
Hailesilassie B W, N‍ Partl M. Adhesive blister propagation under an orthotropic bituminous waterproofing membrane [J]‍. Construction and Building Materials, 2013, 48: 1171‒1178‍.
[37]
Liu H Y, Li Y, Zhang Q, al et‍. Deformation characteristic and mechanism of blisters in cement concrete bridge deck pavement [J]‍. Construction and Building Materials, 2018, 172: 358‒369‍.
[38]
Simon C M, Kim J, Gomez-Gualdron D A, al et‍. The materials genome in action: Identifying the performance limits for methane storage [J]‍. Energy & Environmental Science, 2015 (4): 1190‒1199‍.
[39]
宿彦京 , 杨明理 , 祝伟丽 , 周科朝 , 等 , 新材料研发智能化技术发展研究 [J]‍. 中国工程科学 , 2023 , 25 3 : 161 ‒ 169 ‍.
[40]
Goikoetxeaundia G, González O, Muñoz M E, al et‍. Dynamic viscoelastic characterization of bitumen/polymer roofing membranes [J]‍. Macromolecular Materials and Engineering, 2007, 292(6): 715‒722‍.
[41]
Mazzotta F, Lantieri C, Vignali V, al et‍. Performance evaluation of recycled rubber waterproofing bituminous membranes for concrete bridge decks and other surfaces [J]‍. Construction and Building Materials, 2017, 136: 524‒532‍.
[42]
Shahraki M, Tessari A, Bolisetti C‍. An experimental study on the interface between a waterproofing membrane in contact with dry and saturated sand [C]‍. Charlotte: Geo-Congress 2022, 2022‍.
[43]
Walter A, Brito J, G‍ Lopes J. Current flat roof bituminous membranes waterproofing systems—Inspection, diagnosis and pathology classification [J]‍. Construction and Building Materials, 2005, 19(3): 233‒242‍.
[44]
Shi X, Burnett E‍. Mechanics and test study of flexible membranes ballooning in three dimensions [J]‍. Building and Environment, 2008, 43(11): 1871‒1881‍.
[45]
Ding T, Xiao J Z, Wei K H, al et‍. Seismic behavior of concrete shear walls with bolted end-plate DfD connections [J]‍. Engineering Structures, 2020, 214: 110610‍.
[46]
K‍ Najafi S. Use of recycled plastics in wood plastic composites—A review [J]‍. Waste Management, 2013, 33(9): 1898‒1905‍.
[47]
孙昱楠 , 张帆 , 李建园 , 等 . 废塑料处置与利用技术研究进展 [J]‍. 中国工程科学 , 2023 , 25 3 : 182 ‒ 196 ‍.
[48]
Korley L T J, EPPS III T, Helms B A, al et‍. Toward polymer upcycling—Adding value and tackling circularity [J]‍. Science, 2021, 373(6550): 66‒69‍.
[49]
Chen S L, Liu Z, Jiang S H, al et‍. Carbonization: A feasible route for reutilization of plastic wastes [J]‍. Science of The Total Environment, 2020, 710: 136250‍.
[50]
Yang Q L, Yu C H‍. Multiscale enhancement mechanism of carbon nanotube-modified asphalt at high temperature by oxidative aging: A molecular dynamics simulation investigation [J]‍. Energy Fuels, 2022, 36(24): 15279‒15296‍.
[51]
Yang Q L, Qian Y, Fan Z P, al et‍. Exploiting the synergetic effects of graphene and carbon nanotubes on the mechanical properties of bitumen composites [J]‍. Carbon, 2021, 172: 402‒413‍.
[52]
Jambeck J R, Geyer R, Wilcox C, al et‍. Plastic waste inputs from land into the ocean [J]‍. Science, 2015, 347(6223): 768‒771‍.
[53]
Qu J P, Huang Z X, Yang Z T, al et‍. Industrial-scale polypropylene‒polyethylene physical alloying toward recycling [J]‍. Engineering, 2022, 9(2): 95‒100‍.
基金
中国工程院咨询项目“绿色建造发展战略研究”(2022-XZ-21),“建筑业数字化发展战略研究”(2022-XY-80)
PDF(1535 KB)

Accesses

Citation

Detail

段落导航
相关文章

/