
南水北调西线工程水源区可调水量“十问”
胡鹏, 王浩, 赵勇, 宁远, 蒋云钟, 刘欢, 曾庆慧, 杨泽凡, 周毓彦, 董宁澎, 闫龙, 阿膺兰, 张丰博, 唐家璇, 王玉莲, 王建华
中国工程科学 ›› 2024, Vol. 26 ›› Issue (2) : 210-223.
南水北调西线工程水源区可调水量“十问”
Ten Questions on Adjustable Water Volume of the Western Route of South-to-North Water Diversion Project
南水北调西线工程是我国“四横三纵”国家水网主骨架尚待建设的最后一环,而水源区可调水量是西线工程规划论证面临的焦点和难点问题。本文从水资源本底条件与演变趋势,生态环境与经济社会发展需水,调蓄水库与输水工程规模,调水对水源区及其下游水资源开发利用、水生态环境、水力发电、航运等方面影响的角度,提出了与水源区可调水量相关的10个问题;以长江上游分布式水文模型为基础,建立了南水北调西线工程水源区可调水量模拟分析模型,力图系统、定量地回答所提问题。本文的主要研究结论有:在仅考虑满足水源区河道内外生态环境和经济社会需水的前提下,“上线+下线”组合方案多年平均可调水量为1.59×1010 m³,“完全下线”方案在建设岗托水库进行联调时,多年平均可调水量将达到1.74×1010 m³;在综合考虑调水对水源区水平衡、水力发电和航运影响及其可接受程度后,南水北调西线水源区可调水量为1.22×1010~1.26×1010 m3。长远来看,应谋划西南片区水网与国家水网主骨架、“大动脉”的连接与融合,在减小南水北调西线工程调水影响的同时,提高南水北调西线工程的整体供水能力以及对气候变化等外部条件的适应性。
The Western Route of the South-to-North Water Diversion Project is the final link to be constructed for the four-horizontal three-vertical framework of China’s national water network. The adjustable water volume in the water source areas is a focal and challenging issue in the planning and demonstration of the Western Route. This study raised ten questions related to the adjustable water volume in the water source areas of the Western Route from the aspects of water resource background conditions and evolution trends, ecological and socio-economic water demands, scales of reservoirs and water conveyance projects, as well as impacts of water diversion on water resource development and utilization, aquatic ecological environment, hydropower, and navigation in the water source areas and their lower reaches. Based on a distributed hydrological model of the upper reaches of the Yangtze River, a simulation and analysis model for calculating the adjustable water volume in water source areas of the Western Route is established to quantitatively answer the ten questions raised. The main conclusions are as follows. First, under the premise of solely satisfying ecological and socio-economic water demands within and outside the river channels of the water source areas, a plan that combines upper and lower routes presents an average adjustable water volume of 1.59×1010 m³ over multiple years, while a plan for solely constructing a lower route can reach an average adjustable water volume of 1.74×1010 m³ by constructing the Gangtuo Reservoir for coordinated operation. Second, comprehensively considering the impacts of water diversion on water balance, hydropower, and navigation, as well as their acceptability in the water source areas, the adjustable water volume is between 1.22×1010 and 1.26×1010 m³. Third, in the long term, the plan should focus on connecting and integrating the water network in the southwestern region with the main framework and major streams of the national water network of China. This will reduce the impacts of water diversion by the Western Route Project, increase the overall water supply capacity of the project, and promote its adaptability to external conditions such as climate change.
南水北调西线工程 / 水源区 / 可调水量 / 生态需水 / 跨流域调水
Western Route of South-to-North Water Diversion Project / water source areas / adjustable water volume / ecological water demand / inter-basin water transfer
[1] |
张金良, 景来红, 唐梅英, 等. 南水北调西线工程调水方案研究 [J]. 人民黄河, 2021, 43(9): 9‒13, 24.
Zhang J L, Jing L H, Tang M Y, et al. Study on water transfer scheme of the Western Route of South-to-North Water Diversion Project [J]. Yellow River, 2021, 43(9): 9‒13, 24.
|
[2] |
尹炜, 翟红娟 , 邓志民, 等. 南水北调西线工程水源区生态需水研究 [J]. 人民长江, 2023, 54(6): 41‒46, 65.
Yin W, Zhai H J, Deng Z M, et al. Study on ecological water demand in water source area of the West Route of South-to-North Water Diversion Project [J]. Yangtze River, 2023, 54(6): 41‒46, 65.
|
[3] |
刘玉婷, 许继军, 刘思敏, 等. 长江上游地区生态需水量变化研究 [J]. 水利水电技术(中英文), 2021, 52(8): 120‒131.
Liu Y T, Xu J J, Liu S M, et al. Study on change of eco-water demand in region of upper Yangtze River [J]. Water Resources and Hydropower Engineering, 2021, 52(8): 120‒131.
|
[4] |
陈克恭, 师安隆. 南水北调西线工程调水与用水的统一性思考 [J]. 人民黄河, 2022, 44(2): 7‒11, 26.
Chen K G, Shi A L. Thoughts on the unity of water transfer and water use in the West Route of South-to-North Water Diversion Project [J]. Yellow River, 2022, 44(2): 7‒11, 26.
|
[5] |
吴林. 南水北调西线工程对岷江下段航运的影响 [J]. 水运管理, 2021, 43(6): 8‒9, 28.
Wu L. Influence of the West Route of South-to-North Water Transfer Project on shipping in the lower section of the Minjiang River [J]. Shipping Management, 2021, 43(6): 8‒9, 28.
|
[6] |
里昕. 南水北调西线工程对四川省航运业的影响 [J]. 华北水利水电大学学报(社会科学版), 2016, 32(3): 51‒55.
Li X. Influence of the West Route of South-to-North Water Transfer Project on Sichuan shipping industry [J]. Journal of North China University of Water Resources and Electric Power (Social Science Edition), 2016, 32(3): 51‒55.
|
[7] |
李国英. 对南水北调西线工程的认识与评价 [J]. 人民黄河, 2001, 23(10): 1‒3, 45.
Li G Y. Understanding and evaluation of the West Route of South-to-North Water Transfer Project [J]. Yellow River, 2001, 23(10): 1‒3, 45.
|
[8] |
张玫, 魏洪涛, 张永永, 等. 基于调水河流自然和经济特点的南水北调西线工程调水规模分析 [J]. 工程研究 ‒ 跨学科视野中的工程, 2012, 4(2): 140‒149.
Zhang M, Wei H T, Zhang Y Y, et al. Analysis on the West-Route Project's scale of South-to-North Water Diversion based on the river's natural and economical features [J]. Journal of Engineering Studies, 2012, 4(2): 140‒149.
|
[9] |
冯平, 牛军宜, 张永, 等. 南水北调西线工程水源区河流与黄河的丰枯遭遇分析 [J]. 水利学报, 2010, 41(8): 900‒907.
Feng P, Niu J Y, Zhang Y, et al. Analysis of wetness-dryness encountering probability among water source rivers and the Yellow River in the Western Route of South-to-North Water Transfer Project [J]. Journal of Hydraulic Engineering, 2010, 41(8): 900‒907.
|
[10] |
景来红. 南水北调西线一期工程调水配置及作用研究 [J]. 人民黄河, 2016, 38(10): 122‒125.
Jing L H. Research on allocation and effects of water diversion by Stage Ⅰ Project of the West Route of South-to-North Water Transfer [J]. Yellow River, 2016, 38(10): 122‒125.
|
[11] |
汪青辽, 刘媛, 郝红升, 等. 滇中引水工程取水口下游金沙江生态流量研究 [J]. 水力发电, 2020, 46(9): 28‒31.
Wang Q L, Liu Y, Hao H S, et al. Study on ecological flow of Jinsha River in the downstream of the intake of Dianzhong Water Diversion Project [J]. Water Power, 2020, 46(9): 28‒31.
|
[12] |
董福平, 管仪庆, 周黔生, 等. 河流生态用水流量确定新方法研究 [J]. 水利学报, 2007 (S1): 547‒551.
Dong F P, Guan Y Q, Zhou Q S, et al. Study on the calculation method of river eco-environmental flow [J]. Journal of Hydraulic Engineering, 2007 (S1): 547‒551.
|
[13] |
杨志峰, 张远. 河道生态环境需水研究方法比较 [J]. 水动力学研究与进展(A辑), 2003, 18(3): 294‒301.
Yang Z F, Zhang Y. Comparison of methods for ecological and environmental flow in river channels [J]. Journal of Hydrodynamics, 2003, 18(3): 294‒301.
|
[14] |
Tennat D L. Instream flow regimens for fish, wildlife, recreation and related environmental resources [J]. Fishers, 1976, 1(4): 359‒373.
|
[15] |
Armstrong D S, Parker G W, Richards T A. Evaluation of streamflow requirements for habitat protection by comparison to streamflow characteristics at index streamflow-gaging stations in Southern New England [EB/OL]. (2005-06-15)[2023-05-22]. https: //pubs.usgs.gov/wri/wrli034332.
|
[16] |
刘欢, 胡鹏, 王建华, 等. 中国河流分区分类生态基流占比阈值确定 [J]. 南水北调与水利科技(中英文), 2022, 20(4): 748‒756.
Liu H, Hu P, Wang J H, et al. Determination of the proportion thresholds of ecological base flow in rivers with different scales in different watersheds of China [J]. South-to-North Water Transfers and Water Science & Technology, 2022, 20(4): 748‒756.
|
[17] |
Yang Z F, Hu P, Wang J H, et al. Ecological flow process acknowledging different spawning patterns in the Songhua River [J]. Ecological Engineering, 2019, 132: 56‒64.
|
[18] |
Bartschi D K. A habitat-discharge method of determining instream flows for aquatic habitat [C]. Bethesda: American Fisheries Society, 1976
|
[19] |
刘昌明, 门宝辉, 宋进喜. 河道内生态需水量估算的生态水力半径法 [J]. 自然科学进展, 2007, 17(1): 42‒48.
Liu C M, Men B H, Song J X. Ecological hydraulic radius method for estimating ecological water demand in river channels [J]. Progress in Natural Science, 2007, 17(1): 42‒48.
|
[20] |
Tharme R E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers [J]. River Research and Applications, 2003, 19(5‒6): 397‒441.
|
[21] |
中华人民共和国水利部. 中国水资源公报2020 [M]. 北京: 中国水利水电出版社, 2021.
Ministry of Water Resources of the People's Republic of China. Annual report on China's water resources 2020 [M]. Beijing: China Water & Power Press, 2021.
|
[22] |
贾仰文, 王浩, 倪广恒, 等. 分布式流域水文模型原理与实践 [M]. 北京: 中国水利水电出版社, 2005.
Jia Y W, Wang H, Ni G H, et al. Principle and practice of distributed watershed hydrological model [M]. Beijing: China Water & Power Press, 2005.
|
[23] |
王浩, 严登华, 秦大庸, 等. 南水北调西线工程水源区水循环模拟与水资源定量评价 [M]. 郑州: 黄河水利出版社, 2008.
Wang H, Yan D H, Qin D Y, et al. Water cycle simulation and quantitative evaluation of water resources in the water source area of the Western Route of the South-to-North Water Transfer Project [M]. Zhengzhou: The Yellow River Water Conservancy Press, 2005.
|
[24] |
茹辉军, 李云峰, 沈子伟, 等. 大渡河流域川陕哲罗鲑分布与栖息地特征研究 [J]. 长江流域资源与环境, 2015, 24(10): 1779‒1785.
Ru H J, Li Y F, Shen Z W, et al. Distribution and habitat character of Hucho Bleekeri in the Dadu River Basin [J]. Resources and Environment in the Yangtze Basin, 2015, 24(10): 1779‒1785.
|
[25] |
杨青瑞, 陈求稳, 马徐发. 雅砻江下游鱼类资源调查及保护措施 [J]. 水生态学杂志, 2011, 32(3): 94‒98.
Yang Q R, Chen Q W, Ma X F. Status of fish resources and protection measures in the lower reaches of Yalong River [J]. Journal of Hydroecology, 2011, 32(3): 94‒98.
|
[26] |
曹鹏飞, 陈梅, 苏柳, 等. 南水北调西线一期工程对调水河流及生态环境的影响分析 [J]. 水利发展研究, 2018, 18(2): 15‒18.
Cao P F, Chen M, Su L, et al. Analysis on the impact of the first phase of the West Route of the South-to-North Water Diversion Project on the river and ecological environment [J]. Water Resources Development Research, 2018, 18(2): 15‒18.
|
/
〈 |
|
〉 |