智能无人集群系统跨域协同技术研究现状与展望

江碧涛, 温广辉, 周佳玲, 郑德智

中国工程科学 ›› 2024, Vol. 26 ›› Issue (1) : 117-126.

PDF(774 KB)
PDF(774 KB)
中国工程科学 ›› 2024, Vol. 26 ›› Issue (1) : 117-126. DOI: 10.15302/J-SSCAE-2024.01.015
新一代人工智能及产业集群发展战略研究

智能无人集群系统跨域协同技术研究现状与展望

作者信息 +

Cross-Domain Cooperative Technology of Intelligent Unmanned Swarm Systems: Current Status and Prospects

Author information +
History +

摘要

随着智能化技术和无人系统技术的快速发展,智能无人集群系统跨域协同的概念应运而生并得到了广泛关注与深入研究,智能无人集群系统跨域协同技术逐渐成为世界各国抢占无人系统技术竞争中的制高点。本文从我国智能无人集群系统跨域协同技术的发展需求出发,梳理了海空、空地以及海陆 / 海陆空等典型无人场景跨域协同技术的研究现状;深入分析了智能无人集群系统跨域协同技术的发展现状、技术需求以及未来的重点研究方向。最后,从总体思路、体系架构、理论创新和技术攻关4 个层面,提出了推动智能无人集群系统跨域协同技术稳健与快速发展的对策建议,以期促进我国无人系统应用能力的持续提升。

Abstract

As intelligent technologies and unmanned systems develop rapidly, the concept of cross-domain cooperative technology of intelligent unmanned swarm systems has emerged, received widespread attention, and gradually become the high ground in the competition of unmanned system technologies among countries worldwide. Based on the development demand for the cross-domain cooperative technology of intelligent unmanned swarm systems in China, this study summarizes the research status of the crossdomain cooperative technology in typical unmanned scenarios such as sea – air, air – ground, and sea – ground/sea – ground – air, and thoroughly analyzes the current status, technological demand, and key research directions of the technology. Additionally, countermeasures and suggestions are proposed to promote the steady and rapid development of the cross-domain cooperative technology from the perspectives of overall concept, system architecture, theoretical innovation, and technological breakthroughs, with the aim of facilitating the sustained development of unmanned systems in China.

关键词

智能无人集群系统 / 跨域协同 / 协同控制 / “空天地海”一体化网络

Keywords

intelligent unmanned swarm systems / cross-domain cooperation / cooperative control / space–air–ground–sea integrated network

引用本文

导出引用
江碧涛, 温广辉, 周佳玲. 智能无人集群系统跨域协同技术研究现状与展望. 中国工程科学. 2024, 26(1): 117-126 https://doi.org/10.15302/J-SSCAE-2024.01.015

参考文献

[1]
王耀南, 安果维, 王传成, 等‍‍. 智能无人系统技术应用与发展趋势 [J]‍. 中国舰船研究, 2022, 17(5): 9‒26‍.
[2]
温广辉, 周佳玲, 吕跃祖, 等‍. 多导弹协同作战中的分布式协调控制问题 [J]‍. 指挥与控制学报, 2021, 7(2): 137‒145‍.
[3]
梁晓龙, 王宁, 王维佳, 等‍. 海上跨域无人集群研究进展综述 [J]‍. 空军工程大学学报, 2023, 24(5): 2‒15+1‍.
[4]
初军田, 张武, 丁超, 等‍. 跨域无人系统协同作战需求分析 [J]‍. 指挥信息系统与技术, 2022, 13(6): 1‒8‍.
[5]
何玉庆, 秦天一, 王楠‍. 跨域协同: 无人系统技术发展和应用新趋势 [J]‍. 无人系统技术, 2021, 4(4): 1‒13‍.
[6]
Ma Y, Zhao Y J, Qi X, et al‍. Cooperative communication framework design for the unmanned aerial vehicles-unmanned surface vehicles formation [J]‍. Advances in Mechanical Engineering, 2018, 10(5): 1‒9‍.
[7]
Yu Y N, Rodríguez-Piñeiro J, Xie S Q, et al‍. Measurement-based propagation channel modeling for communication between a UAV and a USV [C]‍. Madrid: 2022 16th European Conference on Antennas and Propagation (EuCAP), 2022‍.
[8]
Wang C, Zhang P Y, Kumar N, et al‍. GCWCN: 6G-based global coverage wireless communication network architecture [J]‍. IEEE Network, 2023, 37(3): 218‒223‍.
[9]
Bao S H, Sun W F, Xu H‍. A native intelligent and security 6G network architecture [C]‍. Foshan: 2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops), 2022‍.
[10]
王浩亮, 尹晨阳, 卢丽宇, 等‍. 面向海上搜救的UAV与USV集群协同路径跟踪控制 [J]‍. 中国舰船研究, 2022, 17(5): 157‒165‍.
[11]
Gonzalez-Garcia A, Miranda-Moya A, Castañeda H‍. Robust visual tracking control based on adaptive sliding mode strategy: Quadrotor UAV-catamaran USV heterogeneous system [C]‍. Athens: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), 2021‍.
[12]
Li W Z, Ge Y, Ye G‍. UAV-USV cooperative tracking based on MPC [C]‍. Hefei: 2022 34th Chinese Control and Decision Conference (CCDC), 2022‍.
[13]
Li J Q, Zhang G Q, Li B‍. Robust adaptive neural cooperative control for the USV-UAV based on the LVS-LVA guidance principle [J]‍. Journal of Marine Science and Engineering, 2022, 10(1): 51‍.
[14]
Wei W, Wang J J, Fang Z R, et al‍. 3U: Joint design of UAV-USV-UUV networks for cooperative target hunting [J]‍. IEEE Transactions on Vehicular Technology, 2023, 72(3): 4085‒4090‍.
[15]
Yao P, Gao Z C‍. UAV/USV cooperative trajectory optimization based on reinforcement learning [C]‍. Xiamen: 2022 China Automation Congress (CAC), 2022‍.
[16]
赵良玉, 程喆坤, 高凤杰, 等‍. 无人机 / 艇协同自主降落的若干关键技术 [J]‍. 中国造船, 2020, 61(S1): 156‒163‍.
[17]
范云生, 孙涛, 王国峰, 等‍. 基于海空双视觉协同的无人艇载无人机自主降落与验证 [J]‍. 大连海事大学学报, 2022, 48(2): 1‒10, 20‍.
[18]
Li W Z, Ge Y, Guan Z H, et al‍. Synchronized motion-based UAV-USV cooperative autonomous landing [J]‍. Journal of Marine Science and Engineering, 2022, 10(9): 1214‍.
[19]
Xu Z C, Hu B B, Liu B, et al‍. Vision-based autonomous landing of unmanned aerial vehicle on a motional unmanned surface vessel [C]‍. Shenyang: 2020 39th Chinese Control Conference (CCC), 2020‍.
[20]
Dai J, Liu S L, Hao X Y, et al‍. Unmanned ground vehicle-unmanned aerial vehicle relative navigation robust adaptive localization algorithm [J]‍. IET Science, Measurement & Technology, 2023, 17(5): 183‒194‍.
[21]
Li J Q, Cheng Y Y, Zhou J, et al‍. Energy-efficient ground traversability mapping based on UAV-UGV collaborative system [J]‍. IEEE Transactions on Green Communications and Networking, 2022, 6(1): 69‒78‍.
[22]
Liu D Q, Bao W D, Zhu X M, et al‍. Vision-aware air-ground cooperative target localization for UAV and UGV [J]‍. Aerospace Science and Technology, 2022, 124: 107525‍.
[23]
Wang D J, Lian B W, Tang C K‍. UGV-UAV robust cooperative positioning algorithm with object detection [J]‍. IET Intelligent Transport Systems, 2021, 15(7): 851‒862‍.
[24]
江碧涛‍. 我国空间对地观测技术的发展与展望 [J]‍. 测绘学报, 2022, 51(7): 1153‒1159‍.
[25]
Li J Q, Deng G Q, Luo C W, et al‍. A hybrid path planning method in unmanned air/ground vehicle (UAV/UGV) cooperative systems [J]‍. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9585‒9596‍.
[26]
Li J X, Liu H, Lai K, et al‍. Vehicle and UAV collaborative delivery path optimization model [J]‍. Mathematics, 2022, 10(20): 3744‍.
[27]
胡子峰, 陈洋, 郑秀娟, 等‍. 空地异构机器人系统协作巡逻路径规划方法 [J]‍. 控制理论与应用, 2022, 39(1): 48‒58‍.
[28]
De Petrillo M, Beard J, Gu Y, et al‍. Search planning of a UAV/UGV team with localization uncertainty in a subterranean environment [J]‍. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(6): 6‒16‍.
[29]
陶灿灿, 韩旭, 周锐‍. 基于DTC和遗传算法的无人机 ‒ 无人车任务规划方法 [J]‍. 无线电通信技术, 2022, 48(6): 1019‒1026‍.
[30]
Krizmancic M, Arbanas B, Petrovic T, et al‍. Cooperative aerial-ground multi-robot system for automated construction tasks [J]‍. IEEE Robotics and Automation Letters, 2020, 5(2): 798‒805‍.
[31]
丁宇航, 王楠, 李雄‍. 基于PDDL的空地协同作战任务规划方法研究 [J]‍. 战术导弹技术, 2022 (1): 131‒138‍.
[32]
周思全, 董希旺, 李清东, 等‍. 无人机 ‒ 无人车异构时变编队控制与扰动抑制 [J]‍. 航空学报, 2020, 41(S1): 723767‍.
[33]
Pacheco Bacheti V, Santos Brandão A, Sarcinelli-Filho M‍. Path-following by a UGV-UAV formation based on null space [C]‍. São Paulo: 2021 14th IEEE International Conference on Industry Applications (INDUSCON), 2021‍.
[34]
Cheng M, Liu H, Wen G H, et al‍. Data-driven time-varying formation-containment control for a heterogeneous air-ground vehicle team subject to active leaders and switching topologies [J]‍. Automatica, 2023, 153: 111029‍.
[35]
Liu D Y, Liu H, Lyu J H, et al‍. Time-varying formation of heterogeneous multiagent systems via reinforcement learning subject to switching topologies [J]‍. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(6): 2550‒2560‍.
[36]
Zhao W B, Liu H, Valavanis K P, et al‍. Fault-tolerant formation control for heterogeneous vehicles via reinforcement learning [J]‍. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 2796‒2806‍.
[37]
Zhao W B, Liu H, Gao Q, et al‍. Robust optimal formation control of heterogeneous air-ground vehicles under communication faults via reinforcement learning [C]‍. Harbin: International Conference on Guidance, Navigation and Control, 2023‍.
[38]
徐晓帆, 王妮炜, 高璎园, 等‍. 陆海空天一体化信息网络发展研究 [J]‍. 中国工程科学, 2021, 23(2): 39‒45‍.
[39]
Khan M A, Alzahrani B A, Barnawi A, et al‍. A resource friendly authentication scheme for space‒air‒ground‒sea integrated Maritime Communication Network [J]‍. Ocean Engineering, 2022, 250: 110894‍.
[40]
Feng H L, Cui Z Q, Han C Z, et al‍. Bidirectional green promotion of 6G and AI: Architecture, solutions, and platform [J]‍. IEEE Network, 2021, 35(6): 57‒63‍.
[41]
Wang Z G, Chen C L, Zhang Y P, et al‍. An interaction framework for multi-domain unmanned systems collaboration based on interoperability messages [C]‍. Hefei: 2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT), 2022‍.
[42]
Seehuus R A, Mathiassen K, Ruud E L M, et al‍. Battle management language for robotic systems [C]‍. Prague: International Conference on Modelling and Simulation for Autonomous Systems, 2019‍.
基金
中国工程院咨询项目“跨域无人系统群体智能技术体系研究”(2023-HY-15)
PDF(774 KB)

Accesses

Citation

Detail

段落导航
相关文章

/