深海科学实验装备发展研究

梁健臻, 冯景春, 张卉, 张偲

中国工程科学 ›› 2024, Vol. 26 ›› Issue (2) : 23-37.

PDF(1584 KB)
PDF(1584 KB)
中国工程科学 ›› 2024, Vol. 26 ›› Issue (2) : 23-37. DOI: 10.15302/J-SSCAE-2024.02.004
深海装备技术体系及发展战略研究

深海科学实验装备发展研究

作者信息 +

Advances in Deep-Sea Scientific Experiment Equipment

Author information +
History +

摘要

深海孕育了世界上最大的生态系统,对深海相关演变规律的深刻认知将支撑人类社会的可持续发展;深海极端环境条件决定了开展原位实验作业非常困难,也对深海科学实验装备提出了苛刻的要求。本文从深海科学实验研究的视角出发,按照深海试验装备及试验场、深海原位探测与实验装备、深海环境模拟实验装备的主要划分,系统梳理了国内外深海科学实验装备的发展态势和面临的问题。我国在深海科学实验装备领域已形成了一批自主研发的装备技术,推动了深海科学研究进步,部分优势方向已跻身国际先进水平;但在高精尖装备及其关键核心技术方面未能构建成熟的产业链,导致部分装备发展受限、一些技术薄弱环节凸显。需要加强顶层谋划、协调技术攻关,建立激励机制、推动创新转化,建设示范平台、形成标准体系,突破传感技术、加快国产进程,加强国际合作、提升创新能力,以深海科学实验装备高质量发展推动深海科学研究和海洋强国建设。

Abstract

The deep sea fuels the world's largest ecosystem, and a deep knowledge of its relevant evolutionary patterns can support the sustainable development of human society. It is difficult to carry out in-situ experiments under the extreme environmental conditions in the deep sea, which puts forward harsh requirements for the development of deep-sea scientific experiment equipment. This study summarizes the development status and problems regarding deep-sea scientific experiment equipment in China and abroad from the aspects of deep-sea test equipment and test sites, deep-sea in-situ exploration and experiment equipment, and experimental equipment for deep-sea environment simulation. China has independently developed a serial of equipment and technologies in the field of deep-sea scientific experiment equipment, and some of its advantageous directions have reached the international advanced level, which has promoted the progress of deep-sea scientific research. However, the country fails to build a mature industrial chain in terms of sophisticated equipment and associated key technologies, resulting in the restricted development of some equipment and prominent technological weaknesses. Therefore, we propose the following suggestions to promote deep-sea scientific research and the high-quality development of the deep-sea scientific experiment equipment: (1) strengthening top-level planning to coordinate technical research; (2) establishing incentive mechanisms to encourage innovation transformation; (3) building demonstration platforms and forming a standards system; (4) developing sensing technologies and accelerating the localization process; and (5) strengthening international cooperation to enhance innovation capacities.

关键词

深海 / 科学实验装备 / 原位实验 / 原位观测 / 环境模拟 / 深海试验场

Keywords

deep sea / scientific experiment equipment / in-situ experiment / in-situ observation / environmental simulation / deep-sea test site

引用本文

导出引用
梁健臻, 冯景春, 张卉. 深海科学实验装备发展研究. 中国工程科学. 2024, 26(2): 23-37 https://doi.org/10.15302/J-SSCAE-2024.02.004

参考文献

[1]
Feng J C, Liang J Z, Cai Y P, et al. Deep-sea organisms research oriented by deep-sea technologies development [J]. Science Bulletin, 2022, 67(17): 1802‒1816.
[2]
Liang J Z, Feng J C, Zhang S, et al. Role of deep-sea equipment in promoting the forefront of studies on life in extreme environments [J]. iScience, 2021, 24(11): 103299.
[3]
Abukawa K, Asada A, Mizuno K, et al. Diagnostic evaluation of quay wall using three-dimensional acoustic measurement systems [R]. Tokyo: 2013 IEEE International Underwater Technology Symposium (UT), 2013.
[4]
DeNolfo P, Harrison M, Thomson H, et al. South TOTO acoustic measurement facility (STAFAC) in-water systems design [R]. Quebec City: OCEANS, 2008.
[5]
许立坤, 李文军, 陈光章. 深海腐蚀试验技术 [J]. 海洋科学, 2005, 29(7): 1‒3.
Xu L K, Li W J, Chen G Z. Deep sea corrosion test technique [J]. Marine Sciences, 2005, 29(7): 1‒3.
[6]
马蕊, 赵修涛, 柳存根. 海洋水下立体观测技术装备发展研究 [J]. 中国工程科学, 2020, 22(6): 19‒25.
Ma R, Zhao X T, Liu C G. Development of marine equipment for underwater stereoscopic observation [J]. Strategic Study of CAE, 2020, 22(6): 19‒25.
[7]
Parsons B S, Vogt P R, Haflidason H, et al. Sidescan and video exploration of the Storegga slide headwall region by submarine NR-1 [J]. Marine Geology, 2005, 219(2/3): 195‒205.
[8]
Yücel M, Sievert S M, Vetriani C, et al. Eco-geochemical dynamics of a shallow-water hydrothermal vent system at Milos Island, Aegean Sea (Eastern Mediterranean) [J]. Chemical Geology, 2013, 356: 11‒20.
[9]
Thorsnes T, Chand S, Brunstad H, et al. Strategy for detection and high-resolution characterization of authigenic carbonate cold seep habitats using ships and autonomous underwater vehicles on glacially influenced terrain [J]. Frontiers in Marine Science, 2019, 6: 708.
[10]
Giddens J, Turchik A, Goodell W, et al. The national geographic society deep-sea camera system: A low-cost remote video survey instrument to advance biodiversity observation in the deep ocean [J]. Frontiers in Marine Science, 2021, 7: 601411.
[11]
Guilini K, Soltwedel T, van Oevelen D, et al. Deep-sea nematodes actively colonise sediments, irrespective of the presence of a pulse of organic matter: Results from an in situ experiment [J]. PLoS One, 2011, 6(4): e18912.
[12]
Szafranski K M, Deschamps P, Cunha M R, et al. Colonization of plant substrates at hydrothermal vents and cold seeps in the northeast Atlantic and Mediterranean and occurrence of symbiont-related bacteria [J]. Frontiers in Microbiology, 2015, 6: 162.
[13]
Amano C, Reinthaler T, Sintes E, et al. A device for assessing microbial activity under ambient hydrostatic pressure: The in situ microbial incubator (ISMI) [J]. Limnology and Oceanography: Methods, 2023, 21(2): 69‒81.
[14]
王勇, 郑鹏飞, 贺丽生, 等. 深海生物原位实验与生态监测研究进展 [J]. 应用海洋学学报, 2022, 41(3): 543‒553.
Wang Y, Zheng P F, He L S, et al. Advances in deep-sea in situ biological research and ecosystem observation [J]. Journal of Applied Oceanography, 2022, 41(3): 543‒553.
[15]
Pachiadaki M G, Taylor C, Oikonomou A, et al. In situ grazing experiments apply new technology to gain insights into deep-sea microbial food webs [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 129: 223‒231.
[16]
冯景春, 梁健臻, 张偲, 等. 深海生物资源开发装备发展研究 [J]. 中国工程科学, 2020, 22(6): 67‒75.
Feng J C, Liang J Z, Zhang S, et al. Development of deep-sea biological resources exploitation equipment [J]. Strategic Study of CAE, 2020, 22(6): 67‒75.
[17]
Park C B, Clark D S. Rupture of the cell envelope by decompression of the deep-sea methanogen Methanococcus jannaschii [J]. Applied and Environmental Microbiology, 2002, 68(3): 1458‒1463.
[18]
Marietou A, Chastain R, Beulig F, et al. The effect of hydrostatic pressure on enrichments of hydrocarbon degrading microbes from the gulf of Mexico following the deepwater horizon oil spill [J]. Frontiers in Microbiology, 2018, 9: 808.
[19]
Cario A, Oliver G C, Rogers K L. Characterizing the piezosphere: The effects of decompression on microbial growth dynamics [J]. Frontiers in Microbiology, 2022, 13: 867340.
[20]
Houghton J L, Seyfried W E Jr, Banta A B, et al. Continuous enrichment culturing of thermophiles under sulfate and nitrate-reducing conditions and at deep-sea hydrostatic pressures [J]. Extremophiles: Life Under Extreme Conditions, 2007, 11(2): 371‒382.
[21]
Callac N, Rouxel O, Lesongeur F, et al. Biogeochemical insights into microbe-mineral-fluid interactions in hydrothermal chimneys using enrichment culture [J]. Extremophiles, 2015, 19(3): 597‒617.
[22]
Kim J, Lee J Y, Ahn T W, et al. Validation of strongly coupled geomechanics and gas hydrate reservoir simulation with multiscale laboratory tests [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 149: 104958.
[23]
蒋鹏, 王启, 张斌斌, 等. 深海装备耐压结构用钛合金材料应用研究 [J]. 中国工程科学, 2019, 21(6): 95‒101.
Jiang P, Wang Q, Zhang B B, et al. Application of titanium alloy materials for the pressure-resistant structure of deep diving equipment [J]. Strategic Study of CAE, 2019, 21(6): 95‒101.
[24]
宋宪仓, 杜君峰, 王树青, 等. 海洋科学装备研究进展与发展建议 [J]. 中国工程科学, 2020, 22(6): 76‒83.
Song X C, Du J F, Wang S Q, et al. Research progress of marine scientific equipment and development recommendations in China [J]. Strategic Study of CAE, 2020, 22(6): 76‒83.
[25]
胡震, 曹俊. 载人深潜技术的发展与应用 [J]. 中国工程科学, 2019, 21(6): 87‒94.
Hu Z, Cao J. Development and application of manned deep diving technology [J]. Strategic Study of CAE, 2019, 21(6): 87‒94.
[26]
冯景春, 梁健臻, 张偲, 等. 深海环境生态保护装备发展研究 [J]. 中国工程科学, 2020, 22(6): 56‒66.
Feng J C, Liang J Z, Zhang S, et al. Environmental and ecological protection equipment in deep sea [J]. Strategic Study of CAE, 2020, 22(6): 56‒66.
[27]
Zhang X, Li L F, Du Z F, et al. Discovery of supercritical carbon dioxide in a hydrothermal system [J]. Science Bulletin, 2020, 65(11): 958‒964.
[28]
Du Z F, Li Y, Chen J, et al. Feasibility investigation on deep ocean compact autonomous Raman spectrometer developed for in situ detection of acid radical ions [J]. Chinese Journal of Oceanology and Limnology, 2015, 33(2): 545‒550.
[29]
董一飞, 罗文造, 梁前勇, 等. 坐底式潜标观测系统及其在天然气水合物区的试验性应用 [J]. 海洋地质与第四纪地质, 2017, 37(5): 195‒203.
Dong Y F, Luo W Z, Liang Q Y, et al. A newly developed bottom-supported submersible buoyant system and its testing application to a natural gas hydrate area [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 195‒203.
[30]
牟勇, 梁楚进, 蔺飞龙, 等. 自由投放式声学多普勒海流剖面观测及数据处理 [J]. 海洋学报, 2023, 45(4): 144‒153.
Mou Y, Liang C J, Lin F L, et al. Free-dropping acoustic Doppler Current profiler observation and data processing [J]. Haiyang Xuebao, 2023, 45(4): 144‒153.
[31]
Du Z F, Zhang X, Xi S C, et al. In situ Raman spectroscopy study of synthetic gas hydrate formed by cold seep flow in the South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 197‒206.
[32]
Wang Y, Gao Z M, Li J, et al. Hadal water sampling by in situ microbial filtration and fixation (ISMIFF) apparatus [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 144: 132‒137.
[33]
王洪浩. 深海冷泉保温保压取样器结构设计及优化研究 [D]. 青岛: 青岛科技大学(硕士学位论文), 2020.
Wang H H. Study on the structural design and optimization of deep-sea cold spring thermal insulation and pressure retaining sampler [D]. Qingdao: Qingdao University of Science & Technology (Master's thesis), 2020.
[34]
周朋, 王豪, 张培豪, 等. 全海深沉积物保压取样装置设计及试验研究 [J]. 工程科学与技术, 2023, 55(2): 252‒258.
Zhou P, Wang H, Zhang P H, et al. Design and experimental study of a pressure-holding sampling device for full-depth sediments [J]. Engineering Science and Technology, 2023, 55(2): 252‒258.
[35]
许可, 赵飞虎, 周鑫涛, 等. 深海生物原位保温保压装置设计方案研究 [J]. 机械研究与应用, 2022, 35(2): 62‒66.
Xu K, Zhao F H, Zhou X T, et al. Research on scheme of In-situ temperature and pressure preserving device for deep sea creatures [J]. Mechanical Research & Application, 2022, 35(2): 62‒66.
[36]
林鹏. 深海沉积物原位定植培养工作站系统设计 [D]. 杭州: 杭州电子科技大学(硕士学位论文), 2016.
Lin P. The design of deep-sea sediments in-situ colonization culture systems [D]. Hangzhou: Hangzhou Dianzi University(Master's thesis), 2016.
[37]
王蕾, 王丽萍, 董纯明, 等. 南海深海氮循环微生物的原位培养与多样性分析 [J]. 应用海洋学学报, 2019, 38(1): 1‒13.
Wang L, Wang L P, Dong C M, et al. Deep sea in situ cultivation and diversity analysis of microorganism involved in nitrogen cycling in the South China Sea [J]. Journal of Applied Oceanography, 2019, 38(1): 1‒13.
[38]
杜增丰, 连超, 席世川, 等. 基于"发现"号缆控水下机器人的深海原位探测 / 取样 / 实验技术研发与科学应用 [J]. 现代物理知识, 2021, 33(1): 14‒18.
Du Z F, Lian C, Xi S C, et al. Research and scientific application of deep-sea in-situ detection/sampling/experimental technology based on the "Discovery" cable controlled underwater robot [J]. Modern Physics, 2021, 33(1): 14‒18.
[39]
Zhang Y, Henriet J P, Bursens J, et al. Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor [J]. Bioresource Technology, 2010, 101(9): 3132‒3138.
[40]
Chen J W, Liu H L, Cai S Y, et al. Comparative transcriptome analysis of Eogammarus possjeticus at different hydrostatic pressure and temperature exposures [J]. Scientific Reports, 2019, 9(1): 3456.
[41]
Li P, Feng J C, Yang Z F, et al. Kinetic behaviors of methane hydrate formation with bubble seeping at conditions of "Haima" cold seep [J]. Energy & Fuels, 2021, 35(15): 12132‒12141.
[42]
Xie Y, Feng J C, Hu W Q, et al. Deep-sea sediment and water simulator for investigation of methane seeping and hydrate formation [J]. Journal of Marine Science and Engineering, 2022, 10(4): 514.
[43]
Xie Y, Feng J C, Sun L W, et al. Coupled simulation of hydrate-bearing and overburden sedimentary layers to study hydrate dissociation and methane leakage [J]. Journal of Marine Science and Engineering, 2022, 10(5): 668.
[44]
董胜, 廖振焜, 于立伟, 等. 海洋科考装备技术发展战略研究 [J]. 中国工程科学, 2023, 25(3): 33‒41.
Dong S, Liao Z K, Yu L W, et al. Development strategy for marine scientific equipment and technologies [J]. Strategic Study of CAE, 2023, 25(3): 33‒41.
[45]
王军成, 孙继昌, 刘岩, 等. 我国海洋监测仪器装备发展分析及展望 [J]. 中国工程科学, 2023, 25(3): 42‒52.
Wang J C, Sun J C, Liu Y, et al. Research progress and prospect of marine monitoring instruments and equipment in China [J]. Strategic Study of CAE, 2023, 25(3): 42‒52.
PDF(1584 KB)

Accesses

Citation

Detail

段落导航
相关文章

/