
水下无线通信装备发展研究
Development of Underwater Wireless Communication Equipment Technology
水下无线通信(UWC)装备提供水下环境中信息传递和数据交换的能力,是支撑海洋科学研究、水下组网监测、水下协同作业、海洋安全维护等应用的重要装备类型。本文从水声通信、水下光通信、水下电磁波通信、水下磁感应通信4类主要的UWC装备出发,深入剖析了各自面临的技术难点,全面梳理了相关装备的国内外发展现状,进而凝练了UWC装备未来发展趋势。着眼我国UWC行业发展,辨识了整体差距、底层共性问题、顶层体系等方面的发展困境,提出了攻关基础机理与共性问题、聚焦突破行业核心方向、明晰装备顶层体系架构、完善保障措施与扶持政策等发展建议。相关内容可为把握UWC装备发展态势、布局UWC装备研制与应用等提供参考和启示。
Underwater wireless communication (UWC) equipment facilitates information transmission and data exchange in underwater environments, playing vital roles in marine scientific research, underwater network monitoring, underwater collaborative operation, and marine safety maintenance. This study explores four primary UWC equipment categories: underwater acoustic communication, underwater optical communication, underwater electromagnetic communication, and underwater magnetic induction communication. It conducts in-depth analyses of the technical challenges associated with each category, comprehensively reviews their development status in China and abroad, and forecasts future trends. Focusing on the UWC industry of China, we summarize the development challenges in terms of overarching gaps, common issues, and top-level system, and propose the following development suggestions: (1) improving fundamental mechanisms and addressing common issues, (2) prioritizing breakthroughs in industry core areas, (3) elucidating the top-level system structure of the UWC equipment, and (4) enhancing safeguard measures and support policies. This study is expected to provide references for understanding the developmental trend and promoting the research and application of the UWC equipment.
水下无线通信 / 水声通信 / 水下光通信 / 水下电磁波通信 / 水下磁感应通信 / 装备体系
underwater wireless communication / underwater acoustic communication / underwater optical communication / underwater electromagnetic communication / underwater magnetic induction communication / equipment system
[1] |
金永明. 中国建设海洋强国的成就与任务 [J]. 中国海洋大学学报(社会科学版), 2022 (3): 1‒3.
Jin Y M. Achievements and tasks of building China into a maritime power [J]. Journal of Ocean University of China (Social Sciences), 2022 (3): 1‒3.
|
[2] |
朱敏, 武岩波. 水声通信技术进展 [J]. 中国科学院院刊, 2019, 34(3): 289‒296.
Zhu M, Wu Y B. Development of underwater acoustic communication technology [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 289‒296.
|
[3] |
夏庆生. 水下可见光通信技术发展与应用 [J]. 水雷战与舰船防护, 2016, 24(2): 37‒42.
Xia Q S. Developments and applications of visible light communication technology [J]. Mine Warfare & Ship Self-Defence, 2016, 24(2): 37‒42.
|
[4] |
陶雯, 陈鼎鼎, 何宁宁. 国外海军潜艇通信技术与装备发展 [J]. 通信技术, 2015, 48(4): 375‒381.
Tao W, Chen D D, He N N. Development of foreign navy submarine communication technology and equipment [J]. Communications Technology, 2015, 48(4): 375‒381.
|
[5] |
Akyildiz I F, Wang P, Sun Z. Realizing underwater communication through magnetic induction [J]. IEEE Communications Magazine, 2015, 53(11): 42‒48.
|
[6] |
李梅菊. 水下无线传感器网络综述 [J]. 重庆理工大学学报(自然科学), 2016, 30(8): 92‒98, 121.
Li M J. Overview of underwater wireless sensor networks [J]. Journal of Chongqing University of Technology (Natural Science), 2016, 30(8): 92‒98, 121.
|
[7] |
刘伯胜, 黄益旺, 陈文剑, 等. 水声学原理 [M]. 北京: 科学出版社, 2019.
Liu B S, Huang Y W, Chen W J, et al. Principles of hydroacoustics [M]. Beijing: Science Press, 2019.
|
[8] |
贾宁, 黄建纯. 水声通信技术综述 [J]. 物理, 2014, 43(10): 650‒657.
Jia N, Huang J C. An overview of underwater acoustic communications [J]. Physics, 2014, 43(10): 650‒657.
|
[9] |
杨健敏, 王佳惠, 乔钢, 等. 水声通信及网络技术综述 [J]. 电子与信息学报, 2024, 46(1): 1‒21.
Yang J M, Wang J H, Qiao G, et al. Review of underwater acoustic communication and network technology [J]. Journal of Electronics & Information Technology, 2024, 46(1): 1‒21.
|
[10] |
Zhou S L, Wang Z H. OFDM for underwater acoustic communications [M]. New York: John Wiley & Sons, Ltd., 2014.
|
[11] |
Hodges R P. Underwater acoustics: Analysis, design and performance of sonar [M]. New York: John Wiley & Sons, Ltd., 2011.
|
[12] |
Dhanak M R, Xiros N I. Springer handbook of ocean engineering [M]. Cham: Springer Cham, 2016.
|
[13] |
Huang J, Zhou S L, Willett P. Nonbinary LDPC coding for multicarrier underwater acoustic communication [J]. IEEE Journal on Selected Areas in Communications, 2008, 26(9): 1684‒1696.
|
[14] |
Chen R, Wu W, Zeng Q, et al. Construction and application of polar codes in OFDM underwater acoustic communication [J]. Applied Acoustics, 2023, 211: 109473.
|
[15] |
马璐, 李梦瑶, 刘凇佐, 等. 多波束分集深海远程正交频分复用水声通信 [J]. 声学学报, 2022, 47(5): 579‒590.
Ma L, Li M Y, Liu S Z, et al. A multi-beam space diversity method for long-range underwater acoustic OFDM communication in deep water [J]. Acta Acustica, 2022, 47(5): 579‒590.
|
[16] |
王巍. MIMO-OFDM水声通信关键技术研究 [D]. 哈尔滨: 哈尔滨工程大学(博士学位论文), 2014.
Wang W. The study of the key technologies for underwater acoustic communication based on MIMO-OFDM [D]. Harbin: Harbin Engineering University (Doctoral dissertation), 2014.
|
[17] |
赵云江, 乔钢, 刘凇佐, 等. 带内全双工水声通信技术研究现状与展望 [J]. 数字海洋与水下攻防, 2021, 4(3): 195‒205.
Zhao Y J, Qiao G, Liu S Z, et al. Research status and prospect of In-band full-duplex underwater acoustic communication technology [J]. Digital Ocean & Underwater Warfare, 2021, 4(3): 195‒205.
|
[18] |
马璐. 多用户OFDM水声通信技术研究 [D]. 哈尔滨: 哈尔滨工程大学(博士学位论文), 2016.
Ma L. Study on multiuser OFDM-based underwater acoustic communication [D]. Harbin: Harbin Engineering University (Doctoral dissertation), 2016.
|
[19] |
Qarabaqi P, Stojanovic M. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels [J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 701‒717.
|
[20] |
Jensen F B, Kuperman W A, Porter M B, et al. Computational ocean acoustics [M]. New York: Springer New York, 2011.
|
[21] |
Stojanovic M, Preisig J. Underwater acoustic communication channels: Propagation models and statistical characterization [J]. IEEE Communications Magazine, 2009, 47(1): 84‒89.
|
[22] |
Etter P C. Underwater acoustic modeling and simulation [M]. Boca Raton: CRC Press, 2018
|
[23] |
乔钢, 王巍, 刘凇佐, 等. 改进的多输人多输出正交频分复用水声通信判决反馈信道估计算法 [J]. 声学学报, 2016, 41(1): 94‒104.
Qiao G, Wang W, Liu S Z, et al. An improved decision feedback channel estimation algorithm for multiple-input multiple-output orthogonal frequency division multiplexing underwater acoustic communication [J]. Acta Acustica, 2016, 41(1): 94‒104.
|
[24] |
许浩, 朱敏, 武岩波. 一种水声通信中的多阵元Turbo均衡算法 [J]. 电子与信息学报, 2014, 36(6): 1465‒1471.
Xu H, Zhu M, Wu Y B. An algorithm of multi-array turbo equalization of underwater acoustic communication [J]. Journal of Electronics & Information Technology, 2014, 36(6): 1465‒1471.
|
[25] |
Ahmed R, Stojanovic M. Joint power and rate control with constrained resources for underwater acoustic channels [C]. Washington DC: OCEANS 2015‒MTS/IEEE Washington, 2015.
|
[26] |
Radosevic A, Ahmed R, Duman T M. Adaptive OFDM modulation for underwater acoustic communications: Design considerations and experimental results [J]. IEEE Journal of Oceanic Engineering, 2013, 39(2): 357‒370.
|
[27] |
赵亮, 朱维庆, 朱敏. 一种用于水声相干通信系统的自适应均衡算法 [J]. 电子与信息学报, 2008, 30(3): 648‒651.
Zhao L, Zhu W Q, Zhu M. An adaptive equalization algorithm for underwater acoustic coherent communication system [J]. Journal of Electronics & Information Technology, 2008, 30(3): 648‒651.
|
[28] |
Li B S, Zhou S L, Stojanovic M, et al. Non-uniform Doppler compensation for zero-padded OFDM over fast-varying underwater acoustic channels [C]. Aberdeen: OCEANS 2007‒Europe, 2007.
|
[29] |
Li B S, Zhou S L, Stojanovic M, et al. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts [J]. IEEE Journal of Oceanic Engineering, 2008, 33(2): 198‒209.
|
[30] |
Feng X, Esmaiel H, Wang J, et al. Underwater acoustic communications based on OTFS [C]. Beijing: 2020 15th IEEE International Conference on Signal Processing (ICSP), 2020.
|
[31] |
赵云玲. 水声通信OFDM信号侦察与干扰技术研究 [D]. 哈尔滨: 哈尔滨工程大学(硕士学位论文), 2020.
Zhao Y L. Research on reconnaissance and interference technology of underwater acoustic communication OFDM signal [D]. Harbin: Harbin Engineering University (Master's thesis), 2020.
|
[32] |
董阳泽, 张刚强, 印明明. 网络化水声对抗技术 [M]. 北京: 电子工业出版社, 2012.
Dong Y Z, Zhang G Q, Yin M M. Networked underwater acoustic countermeasure technology [M]. Beijing: Publishing House of Electronics Industry, 2012.
|
[33] |
刘凇佐, 乔钢, 尹艳玲. 一种利用海豚叫声的仿生水声通信方法 [J]. 物理学报, 2013, 62(14): 291‒298.
Liu S Z, Qiao G, Yin Y L. Bionic underwater acoustic communication using dolphin sounds [J]. Acta Physica Sinica, 2013, 62(14): 291‒298.
|
[34] |
王彪, 刘光杰, 戴跃伟. 一种基于船舶辐射噪声的水声隐蔽通信方法及系统: CN201210403996.1 [P]. 2013-02-06.
Wang B, Liu G J, Dai Y W. An underwater acoustic covert communication method and system based on ship radiation noise: CN201210403996.1 [P]. 2013-02-06.
|
[35] |
Frank H, Stojan R. High bandwidth underwater optical communication [J]. Applied Optics, 2008, 47(2): 277‒283.
|
[36] |
Lu H H, Li C Y, Lin H H, et al. An 8 m/9.6 gbps underwater wireless optical communication system [J]. IEEE Photonics Journal, 2016, 8(5): 1‒7.
|
[37] |
Tsai C L, Lu Y C, Chang S H. InGaN LEDs fabricated with parallel-connected multi-pixel geometry for underwater optical communications [J]. Optics Laser Technology, 2019, 118: 69‒74.
|
[38] |
Cochenour B, Mullen L, Laux A. Phase coherent digital communications for wireless optical links in turbid underwater environments [C]. Vancouver: OCEANS 2007, 2007.
|
[39] |
林木泉, 杨少程. 水下光通信技术发展现状 [J]. 广东通信技术, 2023, 43(11): 75‒79.
Lin M Q, Yang S C. Development status of underwater optical communication technology [J]. Guangdong Communication Technology, 2023, 43(11): 75‒79.
|
[40] |
Sun X B, Kang C H, Kong M W, et al. A review on practical considerations and solutions in underwater wireless optical communication [J]. Journal of Lightwave Technology, 2020, 38(2): 421‒431.
|
[41] |
Zedini E, Oubei H M, Kammoun A, et al. Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems [J]. IEEE Transactions on Communications, 2019, 67(4): 2893‒2907.
|
[42] |
Oubei H M, Sun X B, Ng T K, et al. Scintillations of RGB laser beams in weak temperature and salinity-induced oceanic turbulence [C]. Lerici: 2018 Fourth Underwater Communications and Networking Conference, 2018.
|
[43] |
Oubei H M, ElAfandy R T, Park K H, et al. Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations [C]. Orlando: 2017 IEEE Photonics Conference, 2017.
|
[44] |
张立妍, 蒋锐, 张龙, 等. 水下无线光通信中MIMO技术研究现状 [J]. 光通信研究, 2023 (4): 14‒20, 72.
Zhang L Y, Jiang R, Zhang L, et al. Research status of MIMO technology in underwater wireless optical communication [J]. Study on Optical Communications, 2023 (4): 14‒20, 72.
|
[45] |
Liu W H, Zou D F, Xu Z Y, et al. Non-line-of-sight scattering channel modeling for underwater optical wireless communication [C]. Shenyang: 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, 2015.
|
[46] |
Al-Shamma'A A I, Shaw A, Saman S. Propagation of electromagnetic waves at MHz frequencies through seawater [J]. IEEE Transactions on Antennas and Propagation, 2004, 52(11): 2843‒2849.
|
[47] |
窦智, 张彦敏, 刘畅, 等. AUV水下通信技术研究现状及发展趋势探讨 [J]. 舰船科学技术, 2020, 42(3): 93‒97.
Dou Z, Zhang Y M, Liu C, et al. Research status and future development trend of AUV underwater communication technology [J]. Ship Science and Technology, 2020, 42(3): 93‒97.
|
[48] |
Palmeiro A, Martin M, Crowther I, et al. Underwater radio frequency communications [C]. Santander: OCEANS 2011 IEEE‒Spain, 2011.
|
[49] |
王毅凡, 周密, 宋志慧. 水下无线通信技术发展研究 [J]. 通信技术, 2014, 47(6): 589‒594.
Wang Y F, Zhou M, Song Z H. Development of underwater wireless communication technology [J]. Communications Technology, 2014, 47(6): 589‒594.
|
[50] |
Ali M F, Jayakody D N K, Perera T D, et al. Underwater communications: Recent advances [C]. Bhutan: International Conference on Emerging Technologies of Information and Communications, 2019.
|
[51] |
Che X H, Wells I, Dickers G, et al. Re-evaluation of RF electromagnetic communication in underwater sensor networks [J]. IEEE Communications Magazine, 2010, 48(12): 143‒151.
|
[52] |
Gussen C M G, Diniz P S R, Campos M L R, et al. A survey of underwater wireless communication technologies [J]. Journal of Communication and Information Systems, 2016, 31(1): 242‒255.
|
[53] |
Sojdehei J J, Wrathall P N, Dinn D F. Magneto-inductive (MI) communications [C]. Honolulu: MTS/IEEE Oceans 2001, 2001.
|
[54] |
Huang H, Zheng Y R. Node localization in 3-D by magnetic-induction communications in wireless sensor networks [C]. Anchorage: OCEANS 2017‒Anchorage, 2017.
|
[55] |
朱睿超, 高俊奇, 毛智能, 等. 基于磁感应的跨介质通信技术研究 [J]. 数字海洋与水下攻防, 2022, 5(4): 335‒341.
Zhu R C, Gao J Q, Mao Z N, et al. Research on cross-medium communication technology based on magnetic induction [J]. Digital Ocean & Underwater Warfare, 2022, 5(4): 335‒341.
|
[56] |
Wei D B, Soto S S, Garcia J, et al. ROV assisted magnetic induction communication field tests in underwater environments [C]. Shenzhen: Proceedings of the 13th International Conference on Underwater Networks & Systems, 2018.
|
[57] |
Guo H Z, Sun Z, Wang P. Multiple frequency band channel modeling and analysis for magnetic induction communication in practical underwater environments [J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 6619‒6632.
|
[58] |
Kisseleff S, Sackenreuter B, Akyildiz I F, et al. On capacity of active relaying in magnetic induction based wireless underground sensor networks [C]. London: 2015 IEEE International Conference on Communications, 2015.
|
[59] |
Gulbahar B, Akan O B. A communication theoretical modeling and analysis of underwater magneto-inductive wireless channels [J]. IEEE Transactions on Wireless Communications, 2012, 11(9): 3326‒3334.
|
[60] |
Sun Z, Akyildiz I F, Kisseleff S, et al. Increasing the capacity of magnetic induction communications in RF-challenged environments [J]. IEEE Transactions on Communications, 2013, 61(9): 3943‒3952.
|
[61] |
Li S, Sun Y J, Shi W J, et al. Capacity of magnetic-induction MIMO communication for wireless underground sensor networks [J]. International Journal of Distributed Sensor Networks, 2015: 42632.
|
[62] |
朱维庆, 朱敏, 武岩波, 等. 载人潜水器"蛟龙"号的水声通信信号处理 [J]. 声学学报, 2012, 37(6): 565‒573.
Zhu W Q, Zhu M, Wu Y B, et al. Signal processing in underwater acoustic communication system for manned deep submersible "Jiaolong" [J]. Acta Acustica, 2012, 37(6): 565‒573.
|
[63] |
朱敏, 杨波, 刘烨瑶. "奋斗者"号全海深载人潜水器声学系统研制 [J]. 科技成果管理与研究, 2021, 16(9): 76‒78.
Zhu M, Yang B, Liu Y Y. Development of Struggler full-sea deep-sea manned submersible [J]. Management and Research on Scientific & Technological Achievements, 2021, 16(9): 76‒78.
|
[64] |
"悟空号"再创潜深纪录 [J]. 船舶工程, 2021, 43(11): 1.
"Wukong" set another record for diving depth [J]. Ship Engineering, 2021, 43(11): 1.
|
[65] |
席瑞, 党谦谦, 何成兵, 等. 低复杂度单载波频域Turbo均衡水声通信技术 [J]. 水下无人系统学报, 2018, 26(5): 395‒402.
Xi R, Dang Q Q, He C B, et al. Underwater acoustic communication technology adopting low complexity single carrier frequency-domain turbo equalization [J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 395‒402.
|
[66] |
Kong M W, Lyu W C, Ali T, et al. 10 m 9.51 Gb/s RGB laser diodes-based WDM underwater wireless optical communication [J]. Optics Express, 2017, 25(17): 20829‒20834.
|
[67] |
Liu X Y, Yi S Y, Zhou X L, et al. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation [J]. Optics Express, 2017, 25(22): 27937‒27947.
|
[68] |
孙雷, 韩峰. 便携式ULF/VLF机械通信天线技术的研究进展 [J]. 电讯技术, 2021, 61(3): 384‒390.
Sun L, Han F. Research progress of portable mechanically based antenna project for ULF/VLF communication [J]. Telecommunication Engineering, 2021, 61(3): 384‒390.
|
[69] |
郑强, 杨日杰, 陈佳琪. 海水中环天线的辐射特性研究 [J]. 舰船电子工程, 2012, 32(10): 126‒128.
Zheng Q, Yang R J, Chen J Q. Research on radiated properties of a loop antenna in sea [J]. Ship Electronic Engineering, 2012, 32(10): 126‒128.
|
[70] |
王俊. 水下窄带高速电磁波通信技术研究 [D]. 长沙: 国防科技大学(硕士学位论文), 2019.
Wang J. Research on underwater narrowband high-speed electromagnetic wave communication technology [D]. Changsha: National University of Defense Technology (Master's thesis), 2019.
|
[71] |
Wu Z Q, Xu J D, Li B. A high-speed digital underwater communication solution using electric current method [C]. Wuhan: 2010 2nd International Conference on Future Computer and Communication, 2010.
|
[72] |
Lin S C, Akyildiz I F, Wang P, et al. Distributed cross-layer protocol design for magnetic induction communication in wireless underground sensor networks [J]. IEEE Transactions on Wireless Communications, 2015, 14(7): 4006‒4019.
|
[73] |
孙彦景, 潘东跃, 徐华, 等. 水下安全监测无线磁感应通信3D路径损耗 [J]. 中国矿业大学学报, 2019, 48(3): 616‒623.
Sun Y J, Pan D Y, Xu H, et al. Wireless magnetic-induction communication 3D path loss for underwater safety monitoring [J]. Journal of China University of Mining & Technology, 2019, 48(3): 616‒623.
|
/
〈 |
|
〉 |