我国关键有源光纤材料发展战略研究

宋向阳, 唐国武, 董国平, 杨中民

中国工程科学 ›› 2024, Vol. 26 ›› Issue (3) : 42-52.

PDF(622 KB)
PDF(622 KB)
中国工程科学 ›› 2024, Vol. 26 ›› Issue (3) : 42-52. DOI: 10.15302/J-SSCAE-2024.03.017
关键材料体系自立自强战略研究

我国关键有源光纤材料发展战略研究

作者信息 +

Development Strategy of Key Active Optical Fiber Materials in China

Author information +
History +

摘要

光纤激光器及放大器广泛应用于智能制造、生命健康、新一代信息技术以及国防军事等领域,而有源光纤是光纤激光器和放大器的关键材料。本文综述了红外波段(近红外1.0 μm、近中红外1.3~1.5 μm、中红外2.0~3.0 μm)关键有源光纤材料的研究进展,从增益系数、增益带宽、特种光纤应用等角度分析了国内外有源光纤材料的发展现状和趋势,指出了我国在该领域所面临的生产设备国产化率不高、高端工业化产品不足等问题,提出了我国关键有源光纤材料未来的重点发展思路、发展方向和发展目标。最后从基本理论自主创新、产业可持续发展、推动政策体系构建、高技术产品引领、全产业链循环发展、领域人才梯队培养等方面提出了对策建议,以期推动我国关键有源光纤材料领域优质、快速发展。

Abstract

Fiber lasers and amplifiers are widely used in intelligent manufacturing, life and health, new generation of information technology, national defense, and military fields. In addition, active optical fibers are key materials for fiber lasers and amplifiers. This study reviews the research progress of key active optical fibers in the infrared band (including near infrared 1.0 μm, 1.3–1.5 μm, and mid infrared 2.0–3.0 μm) and analyzes the research status and development trend of active optical fibers both in China and abroad from the perspectives of gain coefficient, gain bandwidth, and application of special fibers. Moreover, it explores the problems faced by China in this field, including a low localization rate of production equipment and lack of high-end industrialized products, and puts forward the key development strategies, directions, and goals of key active optical fibers in China. Furthermore, we propose several suggestions from the aspects of basic theoretical innovation, sustainable industrial development, policy system construction, high-tech products, circular development of the entire industry chain, and personnel training, thereby promoting the high-quality and rapid development of key active optical fibers in China.

关键词

有源光纤材料 / 红外波段 / 光纤增益 / 光纤带宽

Keywords

active optical fiber materials / infrared band / fiber gain / fiber bandwidth

引用本文

导出引用
宋向阳, 唐国武, 董国平. 我国关键有源光纤材料发展战略研究. 中国工程科学. 2024, 26(3): 42-52 https://doi.org/10.15302/J-SSCAE-2024.03.017

参考文献

[1]
Xie Z X, Shi C, Sheng Q, et al‍‍. A single-frequency 1064-nm Yb3+-doped fiber laser tandem-pumped at 1018 nm [J]‍. Optics Communications, 2020, 461: 125262‍.
[2]
Kotov L V, Akbulut M, Chavez-Pirson A, et al‍. More than 100 W, 18 cm Yb-doped phosphate fiber amplifier [C]‍. San Francisco: Fiber Lasers XVI: Technology and Systems, 2019‍.
[3]
Wu J W, Zhu X S, Temyanko V, et al‍. Yb3+-doped double-clad phosphate fiber for 976 nm single-frequency laser amplifiers [J]‍. Optical Materials Express, 2017, 7(4): 1310‒1316.
[4]
Li H Z, Zang J C, Raghuraman S, et al‍. Large-mode-area multicore Yb-doped fiber for an efficient high power 976 nm laser [J]‍. Optics Express, 2021, 29(14): 21992‒22000‍.
[5]
Limpert J, Schreiber T, Nolte S, et al‍. High-power air-clad large-mode-area photonic crystal fiber laser [J]‍. Optics Express, 2003, 11(7): 818‒823‍.
[6]
Rybaltovsky A A, Lipatov D S, Lobanov A S, et al‍. Photosensitive highly Er/Yb Co-doped phosphosilicate optical fibers for continuous-wave single-frequency fiber laser applications [J]‍. Journal of the Optical Society of America B, 2020, 37(10): 3077‒3083‍.
[7]
Alharbi A G, Mirza J, Raza M, et al‍. Performance enhancement of praseodymium doped fiber amplifiers [J]‍. Computers, Materials & Continua, 2022, 73(3): 5411‒5422‍.
[8]
Wang Y, Halder A, Richardson D J, et al‍. A highly temperature-insensitive Bi-doped fiber amplifier in the E+S-band with 20 dB flat gain from 1435‒1475 nm [C]‍. San Diego: 2023 Optical Fiber Communications Conference and Exhibition (OFC), 2023‍.
[9]
Donodin A, Manuylovich E, Dvoyrin V, et al‍. E-band telecom-compatible 40 dB gain high-power bismuth-doped fiber amplifier with record power conversion efficiency [J]‍. APL Photonics, 2024, 9: 046102‍.
[10]
Huang L H, Jha A, Shen S X, et al‍. Broadband emission in Er3+-Tm3+ codoped tellurite fibre [J]‍. Optics Express, 2004, 12(11): 2429‒2434‍.
[11]
Al-Azzawi A A, Almukhtar A A, Hmood J K, et al‍. Broadband ASE source for S+C+L bands using hafnia-bismuth based erbium Co-doped fibers [J]‍. Optik, 2022, 255: 168723‍.
[12]
Jung Y, Kang Q Y, Sidharthan R, et al‍. Optical orbital angular momentum amplifier based on an air-hole erbium-doped fiber [J]‍. Journal of Lightwave Technology, 2017, 35(3): 430‒436‍.
[13]
Amma Y, Hosokawa T, Ono H, et al‍. Ring-core multicore few-mode erbium-doped fiber amplifier [J]‍. IEEE Photonics Technology Letters, 2017, 29(24): 2163‒2166‍.
[14]
Qiao T, Cheng H H, Wen X X, et al‍. High-power 2 GHz fs pulsed all-fiber amplified laser system at 2‍.0 µm [J]‍. Optics Letters, 2019, 44(24): 6001‒6004‍.
[15]
Tench R E, Romano C, Delavaux J M, et al‍. In-depth studies of the spectral bandwidth of a 25 W 2 μm band PM hybrid Ho- and Tm-doped fiber amplifier [J]‍. Journal of Lightwave Technology, 2020, 38(8): 2456‒2463‍.
[16]
Jewell J M, Higby P L, Aggarwal I D‍. Properties of BaO–R2O3–Ga2O3–GeO2 (R=Y, Al, La, and Gd) glasses [J]‍. Journal of the American Ceramic Society, 1994, 77(3): 697‒700‍.
[17]
Ren Z Q, Ben Slimen F, Lousteau J, et al‍. Compact chirped-pulse amplification systems based on highly Tm3+-doped germanate fiber [J]‍. Optics Letters, 2021, 46(13): 3013‒3016‍.
[18]
Kochanowicz M, Zmojda J, Miluski P, et al‍. Tm3+/Ho3+ Co-doped germanate glass and double-clad optical fiber for broadband emission and lasing above 2 µm [J]‍. Optical Materials Express, 2019, 9(3): 1450‒1457‍.
[19]
Kochanowicz M, Zmojda J, Miluski P, et al‍. Ultra-broadband emission in Er3+/Tm3+/Ho3+ triply-doped germanate glass and double-clad optical fiber [J]‍. Optical Materials Express, 2022, 12(6): 2332‒2342‍.
[20]
Kochanowicz M, Sadowska K, Markowski K, et al‍. Broadband NIR luminescence in double-core germanate optical fiber [C]‍. Strasbourg: Fiber Lasers and Glass Photonics: Materials through Applications III, 2022‍.
[21]
Huang C Y, Geng J H, Luo T, et al‍. Rare earth doped optical fibers with multi-section core [J]‍. iScience, 2019, 22: 423‒429‍.
[22]
Barber M J, Shardlow P C, Barua P, et al‍. Nested-ring doping for highly efficient 1907 nm short-wavelength cladding-pumped thulium fiber lasers [J]‍. Optics Letters, 2020, 45(19): 5542‒5545‍.
[23]
Chen S X, Chen Y H, Liu K, et al‍. All-fiber short-wavelength tunable mode-locked fiber laser using normal dispersion thulium-doped fiber [J]‍. Optics Express, 2020, 28(12): 17570‒17580‍.
[24]
Tokita S, Hirokane M, Murakami M, et al‍. Stable 10 W Er: ZBLAN fiber laser operating at 271‒288 μm [J]‍. Optics Letters, 2010, 35(23): 3943‒3945‍.
[25]
Fortin V, Jobin F, Larose M, et al‍. 10-W-level monolithic dysprosium-doped fiber laser at 3‍.24 μm [J]‍. Optics Letters, 2019, 44(3): 491‒494‍.
[26]
Gao X B, Cong Z H, Zhao Z G, et al‍. Single-frequency kHz-linewidth 1070 nm laser based on Yb: YAG derived silica fiber [J]‍. IEEE Photonics Technology Letters, 2020, 32(14): 895‒898‍.
[27]
Wan Y, Wen J X, Jiang C, et al‍. Over 100 mW stable low-noise single-frequency ring-cavity fiber laser based on a saturable absorber of Bi/Er/Yb Co-doped silica fiber [J]‍. Journal of Lightwave Technology, 2022, 40(3): 805‒812‍.
[28]
Lin Z Q, Wang F, Wang M, et al‍. Maintaining broadband gain in a Nd3+/Yb3+co-doped silica fiber amplifier via dual-laser pumping [J]‍. Optics Letters, 2018, 43(14): 3361‒3364‍.
[29]
Lin Z Q, Yu C L, Hu L L‍. Laser properties of Nd3+/Yb3+ Co-doped glass fiber around 1 µm [J]‍. Journal of the Optical Society of America B, 2021, 38(8): 2443‍‒2450.
[30]
Tang G W, Song X Y, Yang D L, et al‍. Broadband 1‍.0 µm emission in Nd3+/Yb3+ Co-doped phosphate glasses and fibers for photonic applications [J]‍. Optics Letters, 2023, 48(22): 5879‒5882‍.
[31]
Wang F, Wang M, Shao C Y, et al‍. Highly fluorine and ytterbium doped polarization maintaining large mode area photonic crystal fiber via the Sol-gel process [J]‍. Optics Express, 2021, 29(25): 41882‍‒41893.
[32]
Tian J M, Guo M T, Wang F, et al‍. High gain E-band amplification based on the low loss Bi/P Co-doped silica fiber [J]‍. Chinese Optics Letters, 2022, 20(10): 100602‍.
[33]
Chen W W, Wang Y F, Zhang J, et al‍. Ultra-broadband and thermally stable NIR emission in Bi-doped glasses and fibers enabled by a metal reduction strategy [J]‍. Journal of the American Ceramic Society, 2023, 106(7): 4128‒4141‍.
[34]
Lin W, Chen X W, Hu X, et al‍. Manipulating the polarization dynamics in a >10-GHz Er3+/Yb3+ fiber Fabry-Pérot laser [J]‍. Optics Express, 2022, 30(18): 32791‒32807‍.
[35]
Cao C, Gu Z M, Qiu Q, et al‍. Radiation-resistant Er-doped fiber based on Ge-Ce co-doping [J]‍. IEEE Photonics Journal, 2022, 14(4): 7146605‍.
[36]
Tang G W, Song X Y, Huang W H, et al‍. Broadband near-infrared amplified spontaneous emission of Er3+-doped germanate glass fiber [J]‍. Optics Letters, 2023, 48(20): 5423‒5426‍.
[37]
Sun Y, Wang X, Yang Q B, et al‍. Er-doped silicate fiber amplifiers in the L-band with flat gain [J]‍. Optics Letters, 2024, 49(4): 989‒992‍.
[38]
Gu Z M, Qiu Q, He L, et al‍. C-band seven-core erbium doped fiber amplifier [C]‍. Shanghai: 2021 Asia Communications and Photonics Conference (ACP), 2021‍.
[39]
Zhang Y F, Zhao Y F, Fang Z W, et al‍. A novel multicore Er/Yb Co-doped microstructured optical fiber amplifier with peanut-shaped air holes cladding [J]‍. Nanophotonics, 2024, 13(6): 891‒899‍.
[40]
Kuan P W, Li K F, Zhang L, et al‍. 0‍.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser [J]‍. IEEE Photonics Technology Letters, 2016, 28(14): 1525‒1528‍.
[41]
Qian G, Wang W, Tang G, et al. Tm: YAG ceramic derived multimaterial fiber with high gain per unit length for 2 μm laser applications [J]. Optics Letters. 2020, 45(5): 1047‒1050‍.
[42]
Tang G, Liang Z, Huang W, et al. 4.3 GHz fundamental repetition rate passively mode-locked fiber laser using a silicate-clad heavily Tm3+-doped germanate core multimaterial fiber [J]. Optics Letters. 2022, 47(3): 682‒685.
[43]
Tang G W, Liang Z H, Huang W H, et al‍. Broadband high-gain Tm3+/Ho3+ Co-doped germanate glass multimaterial fiber for fiber lasers above 2 µm [J]‍. Optics Express, 2022, 30(18): 32693‒32703‍.
[44]
Yao C F, He C F, Jia Z X, et al‍. Holmium-doped fluorotellurite microstructured fibers for 2‍.1 μm lasing [J]‍. Optics Letters, 2015, 40(20): 4695‒4698‍.
[45]
Xia C M, Liu J T, Zhang W, et al‍. Optical properties and laser performance of Tm3+-doped photonic crystal fiber with La2O3-Al2O3-SiO2 glass [C]‍. Singapore‍: 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2017‍.
[46]
Xu N N, Wang P F, Wang S B, et al‍. Wavelength extension beyond 3 µm in a Ho3+/Pr3+ Co-doped AlF3-based fiber laser [J]‍. Optics Letters, 2024, 49(8): 2113‒2116‍.
基金
中国工程院咨询项目“关键材料体系自立自强战略研究”(2022-PP-02)
PDF(622 KB)

Accesses

Citation

Detail

段落导航
相关文章

/