
多种能源融合发展战略研究
Multi-energy Integrated Development Strategy
我国能源强国和“双碳”战略目标的实现,需要加速构建现代能源体系,加快转变能源发展方式和提高能源生产保障能力;多种能源融合是解决各能源分系统割裂、调整优化能源格局、提高能源清洁利用效率的有效解决方案。本文在分析多种能源融合发展现有模式的基础上,总结了国外多种能源融合发展的趋势、我国多种能源融合的发展现状和瓶颈;对标能源强国建设的清洁、高效等特征,提出了集能源转换、互补、再利用以及零碳生产生活功能于一体的新型多能融合模式,进而提出了多种能源融合的基本发展路径。研究建议,立足资源禀赋、建立支撑多种能源融合发展的中长期规划,加快突破多种能源融合关键核心技术、提高装备可靠性,加强“多种能源融合”相关人才培养,优化多种能源融合产业链结构,以更好推进我国多种能源融合发展的规划、建设与实践。
To strengthen its energy sector and realize the carbon peaking and carbon neutrality goals, China needs to accelerate the construction of a modern energy system, transform its energy development mode, and improve its energy production support capabilities. The integration and complementarity of multiple energy sources is an effective concept and scheme to solve the separation of energy subsystems, optimize the energy pattern, and improve the efficiency of clean energy utilization. Based on the analysis of the existing modes of multi-energy integration, this study summarizes the development status and bottlenecks of multi-energy integration in China and the development trend of multi-energy integration in other countries. Considering existing models, a new multi-energy integration model that integrates energy conversion, complementarity, reuse, and zero-carbon production is proposed to achieve the clean and efficient utilization of energy. To promote the planning, construction, and practice of multi-energy integration in China, we further propose a basic development path and the following suggestions: (1) formulating a medium- and long-term plan to support multi-energy integration based on resource endowment, (2) accelerating the breakthroughs in key core technologies for multi-energy integration to improve the reliability of equipment, (3) strengthening the training of talents related to multi-energy integration, and (4) optimizing the structure of the multi-energy integration industrial chain.
多能融合 / 能源强国 / 双碳 / 清洁低碳 / 安全高效
multi-energy integration / energy power / carbon peaking and carbon neutrality / clean and low-carbon / safe and efficient
[1] |
谢克昌. 面向2035年我国能源发展的思考与建议 [J]. 中国工程科学, 2022, 24(6): 1‒7.
Xie K C. China's energy development for 2035: Strategic thinking and suggestions [J]. Strategic Study of CAE, 2022, 24(6): 1‒7.
|
[2] |
梁红娟. 浅谈我国的能源现状及能源对策 [J]. 甘肃科技, 2019, 35(15): 6‒8.
Liang H J. On China's current energy situation and energy countermeasures [J]. Gansu Science and Technology, 2019, 35(15): 6‒8.
|
[3] |
余美玲. 新形势下我国能源发展的特点及趋势分析 [J]. 河南科技, 2019 (17): 128‒130.
Yu M L. Analysis on the characteristics and trends of energy development in China under the new situation [J]. Henan Science and Technology, 2019 (17): 128‒130.
|
[4] |
马艳, 朱文斌, 宋绍伟, 等. 我国能源行业清洁化发展进程、现状与建议 [J]. 山东化工, 2021, 50(13): 84‒85, 90.
Ma Y, Zhu W B, Song S W, et al. Clean development progress, status, and suggestion of Chinese energy industry [J]. Shandong Chemical Industry, 2021, 50(13): 84‒85, 90.
|
[5] |
中能传媒能源安全新战略研究院. 中国能源大数据报告(2023) [R]. 北京: 中能传媒能源安全新战略研究院, 2023.
Institute for New Strategies for Energy Security of China Energy Media Group Co., Ltd. China energy big data report (2023) [R]. Beijing: Institute for New Strategies for Energy Security of China Energy Media Group Co., Ltd., 2023.
|
[6] |
陈志华. "3060"双碳背景下能源发展现状 [J]. 现代工业经济和信息化, 2023, 13(6): 195‒196, 199.
Chen Z H. Current situation of energy development under the background of "30·60 dual carbon" [J]. Modern Industrial Economy and Informationization, 2023, 13(6): 195‒196, 199.
|
[7] |
李洪言, 张景谦, 陈健斌, 等. 2021年全球能源转型面临挑战——基于《bp世界能源统计年鉴(2022)》 [J]. 天然气与石油, 2022, 40(6): 129‒138.
Li H Y, Zhang J Q, Chen J B, et al. Global energy transition faces challenges in 2021—Based on the bp statistical review of world energy (2022) [J]. Natural Gas and Oil, 2022, 40(6): 129‒138.
|
[8] |
苏健, 梁英波, 丁麟, 等. 碳中和目标下我国能源发展战略探讨 [J]. 中国科学院院刊, 2021, 36(9): 1001‒1009.
Su J, Liang Y B, Ding L, et al. Research on China's energy development strategy under carbon neutrality [J]. Bulletin of Chinese Academy of Sciences, 2021, 36(9): 1001‒1009.
|
[9] |
蔡睿, 朱汉雄, 李婉君, 等. "双碳"目标下能源科技的多能融合发展路径研究 [J]. 中国科学院院刊, 2022, 37(4): 502‒510.
Cai R, Zhu H X, Li W J, et al. Development path of energy science and technology under "dual carbon" goals: Perspective of multi-energy system integration [J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 502‒510.
|
[10] |
朱汉雄, 王一, 茹加, 等. "双碳"目标下推动能源技术区域综合示范的路径思考 [J]. 中国科学院院刊, 2022, 37(4): 559‒566.
Zhu H X, Wang Y, Ru J, et al. Thoughts on regional path of promoting comprehensive demonstration of low-carbon energy technology under "dual carbon" goals [J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 559‒566.
|
[11] |
刘楠, 康俊杰, 赵春阳. 多能互补能源基地开发模式及综合效益提升方法 [J]. 中国电机工程学报, 2024, 44(4): 1339‒1352.
Liu N, Kang J J, Zhao C Y. Development model of multi-energy complementary energy base and comprehensive benefit enhancement method [J]. Proceedings of the CSEE, 2024, 44(4): 1339‒1352.
|
[12] |
谭忠富, 谭清坤, 赵蕊. 多能互补系统关键技术综述 [J]. 分布式能源, 2017, 2(5): 1‒10.
Tan Z F, Tan Q K, Zhao R. Review of key technologies for multi energy complementary systems [J]. Distributed Energy, 2017, 2(5): 1‒10.
|
[13] |
王虎. 基于多能互补的综合能源发展模式研究及应用 [J]. 电力与能源, 2022, 43(5): 438‒440, 456.
Wang H. Research and application of comprehensive energy development mode based on multi-energy complementarity [J]. Power & Energy, 2022, 43(5): 438‒440, 456.
|
[14] |
倪炜, 朱吉茂, 姜大霖, 等. "双碳"目标下煤炭与新能源的优化组合方式、挑战与建议 [J]. 中国煤炭, 2022, 48(12): 22‒27.
Ni W, Zhu J M, Jiang D L, et al. Research on the optimized combination modes, challenges and suggestions of coal and new energy under the goals of carbon peak and carbon neutrality [J]. China Coal, 2022, 48(12): 22‒27.
|
[15] |
董洁, 乔建强. "双碳"目标下先进煤炭清洁利用发电技术研究综述 [J]. 中国电力, 2022, 55(8): 202‒212.
Dong J, Qiao J Q. A review on advanced clean coal power generation technology under "carbon peaking and carbon neutrality" goal [J]. Electric Power, 2022, 55(8): 202‒212.
|
[16] |
李更丰, 黄玉雄, 别朝红, 等. 综合能源系统运行可靠性评估综述及展望 [J]. 电力自动化设备, 2019, 39(8): 12‒21.
Li G F, Huang Y X, Bie Z H, et al. Review and prospect of operational reliability evaluation of integrated energy system [J]. Electric Power Automation Equipment, 2019, 39(8): 12‒21.
|
[17] |
郭振祥. 浅谈我国电力能源需求响应发展现状与展望 [J]. 中国设备工程, 2022 (2): 245‒246.
Guo Z X. Discussion on the development status and prospect of China's power energy demand response [J]. China Plant Engineering, 2022 (2): 245‒246.
|
[18] |
赵凤展, 李奇, 张启承, 等. 多能互补能源系统多维度综合评价方法 [J]. 农业工程学报, 2021, 37(17): 204‒210.
Zhao F Z, Li Q, Zhang Q C, et al. Multi-dimensional comprehensive evaluation of multi-energy complementary energy system [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17): 204‒210.
|
[19] |
屈小云, 吴鸣, 李奇, 等. 多能互补综合能源系统综合评价研究进展综述 [J]. 中国电力, 2021, 54(11): 153‒163.
Qu X Y, Wu M, Li Q, et al. Review on comprehensive evaluation of multi-energy complementary integrated energy systems [J]. Electric Power, 2021, 54(11): 153‒163.
|
[20] |
艾芊, 郝然. 多能互补、集成优化能源系统关键技术及挑战 [J]. 电力系统自动化, 2018, 42(4): 2‒10, 46.
Ai Q, Hao R. Key technologies and challenges for multi-energy complementarity and optimization of integrated energy system [J]. Automation of Electric Power Systems, 2018, 42(4): 2‒10, 46.
|
[21] |
王仁顺, 赵宇, 马福元, 等. 受端电网高比例可再生能源消纳的运行瓶颈分析与储能需求评估 [J]. 电网技术, 2022, 46(10): 3777‒3787.
Wang R S, Zhao Y, Ma F Y, et al. Operational bottleneck analysis and energy storage demand evaluation for high proportional renewable energy consumption in receiving-end grid [J]. Power System Technology, 2022, 46(10): 3777‒3787.
|
[22] |
陈冬林, 邹安琪, 王蕾, 等. "东数西算"赋能数据中心可再生能源消纳研究 [J]. 情报杂志, 2023, 42(7): 77‒85.
Chen D L, Zou A Q, Wang L, et al. Research on the renewable energy accommodation in east data and west calculation empowering data centers [J]. Journal of Intelligence, 2023, 42(7): 77‒85.
|
[23] |
李尚民, 王杰杰, 彭玉金, 等. "双碳"目标下多能互补系统的发展 [J]. 山东电力高等专科学校学报, 2023, 26(3): 42‒44.
Li S M, Wang J J, Peng Y J, et al. The development of multi-energy complementation system under the goals of carbon peaking and carbon neutrality [J]. Journal of Shandong Electric Power College, 2023, 26(3): 42‒44.
|
[24] |
马丽梅, 史丹, 裴庆冰. 中国能源低碳转型(2015—2050): 可再生能源发展与可行路径 [J]. 中国人口·资源与环境, 2018, 28(2): 8‒18.
Ma L M, Shi D, Pei Q B. Low-carbon transformation of China's energy in 2015—2050: Renewable energy development and feasible path [J]. China Population, Resources and Environment, 2018, 28(2): 8‒18.
|
[25] |
李争, 张蕊, 孙鹤旭, 等. 可再生能源多能互补制 ‒ 储 ‒ 运氢关键技术综述 [J]. 电工技术学报, 2021, 36(3): 446‒462.
Li Z, Zhang R, Sun H X, et al. Review on key technologies of hydrogen generation, storage and transportation based on multi-energy complementary renewable energy [J]. Transactions of China Electrotechnical Society, 2021, 36(3): 446‒462.
|
[26] |
徐连兵. 我国氢能源利用前景与发展战略研究 [J]. 洁净煤技术, 2022, 28(9): 1‒10.
Xu L B. Research on the prospect and development strategy of hydrogen energy in China [J]. Clean Coal Technology, 2022, 28(9): 1‒10.
|
[27] |
曹建宝. 多能互补与CCUS耦合利用碳减排模式分析 [J]. 当代石油石化, 2022, 30(5): 33‒36, 51.
Cao J B. Analysis of carbon emission reduction model of coupling utilization of multi-energy complementation and CCUS [J]. Petroleum & Petrochemical Today, 2022, 30(5): 33‒36, 51.
|
[28] |
申建建, 王月, 程春田, 等. 水风光多能互补发电调度问题研究现状及展望 [J]. 中国电机工程学报, 2022, 42(11): 3871‒3885.
Shen J J, Wang Y, Cheng C T, et al. Research status and prospect of generation scheduling for hydropower-wind-solar energy complementary system [J]. Proceedings of the CSEE, 2022, 42(11): 3871‒3885.
|
[29] |
Costoya X, DeCastro M, Carvalho D, et al. Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America [J]. Renewable and Sustainable Energy Reviews, 2023, 173: 113101.
|
[30] |
程瑜, 邵振州, 张金波, 等. 火电与风光储耦合规划设计 [J]. 洁净煤技术, 2022, 28(11): 82‒89.
Cheng Y, Shao Z Z, Zhang J B, et al. Planning and design of thermal power and wind solar storage coupling [J]. Clean Coal Technology, 2022, 28(11): 82‒89.
|
[31] |
康俊杰, 赵春阳, 周国鹏, 等. 风光水火储多能互补示范项目发展现状及实施路径研究 [J]. 发电技术, 2023, 44(3): 407‒416.
Kang J J, Zhao C Y, Zhou G P, et al. Research on development status and implementation path of wind-solar-water-thermal-energy storage multi-energy complementary demonstration project [J]. Power Generation Technology, 2023, 44(3): 407‒416.
|
[32] |
吴建中. 欧洲综合能源系统发展的驱动与现状 [J]. 电力系统自动化, 2016 (5): 1‒7.
Wu J Z. Drivers and state-of-the-art of integrated energy systems in Europe [J]. Automation of Electric Power Systems, 2016 (5): 1‒7.
|
[33] |
刘志伟, 林蕾, 曹凯, 等. 综合能源服务研究现状与发展趋势 [J]. 科技创新与应用, 2019 (24): 90‒91.
Liu Z W, Lin L, Cao K, et al. Research status and development trend of comprehensive energy services [J]. Technology Innovation and Application, 2019 (24): 90‒91.
|
[34] |
宫飞翔, 李德智, 田世明, 等. 综合能源系统关键技术综述与展望 [J]. 可再生能源, 2019, 37(8): 1229‒1235.
Gong F X, Li D Z, Tian S M, et al. Review and prospect of core technologies of integrated energy system [J]. Renewable Energy Resources, 2019, 37(8): 1229‒1235.
|
[35] |
左克祥, 王安, 张晋阳, 等. 我国多能互补项目政策分析及技术评价指标 [J]. 中外能源, 2022, 27(5): 24‒28.
Zuo K X, Wang A, Zhang J Y, et al. Policy analysis and technical evaluation indexes of multi-energy complementary projects in China [J]. Sino-Global Energy, 2022, 27(5): 24‒28.
|
[36] |
代璐, 田立勃, 王海亮, 等. 计及用户综合用能行为和政策导向的广域综合能源系统联合规划方法 [J]. 电力系统保护与控制, 2021, 49(9): 57‒71.
Dai L, Tian L B, Wang H L, et al. Integrated planning of supply and demand side considering the behavior analysis of energy users and the policy-oriented impact [J]. Power System Protection and Control, 2021, 49(9): 57‒71.
|
[37] |
周信华, 郑祯晨. 基于源网荷储的综合能源多能互补协同优化规划 [J]. 电工技术, 2023 (10): 95‒97, 137.
Zhou X H, Zheng Z C. Multi energy complementary collaborative optimization planning for integrated energy based on source network load storage [J]. Electric Engineering, 2023 (10): 95‒97, 137.
|
[38] |
章凯, 陈博. "多能互补"技术发展与应用 [J]. 科技和产业, 2018, 18(11): 92‒99.
Zhang K, Chen B. The development and application of "multiple complementary" [J]. Science Technology and Industry, 2018, 18(11): 92‒99.
|
[39] |
何丰, 刘涛, 郭淑萍, 等. 可再生能源制氢技术现状及发展前景 [J]. 电力系统装备, 2023 (4): 39‒41.
He F, Liu T, Guo S P, et al. Present situation and development prospect of renewable energy hydrogen production technology [J]. Electric Power System Equipment, 2023 (4):39‒41.
|
[40] |
张来斌, 胡瑾秋, 张曦月, 等. 氢能制 ‒ 储 ‒ 运安全与应急保障技术现状与发展趋势 [J]. 石油科学通报, 2021, 6(2): 167‒180.
Zhang L B, Hu J Q, Zhang X Y, et al. Research status and development trends of safety and emergency guarantee technology for production, storage and transportation of hydrogen [J]. Petroleum Science Bulletin, 2021, 6(2): 167‒180.
|
[41] |
程海花, 寇宇, 周琳, 等. 面向清洁能源消纳的流域型风光水多能互补基地协同优化调度模式与机制 [J]. 电力自动化设备, 2019, 39(10): 61‒70.
Cheng H H, Kou Y, Zhou L, et al. Collaborative optimal dispatching mode and mechanism of watershed-type wind-solar-water multi-energy complementary bases for clean energy absorption [J]. Electric Power Automation Equipment, 2019, 39(10): 61‒70.
|
[42] |
武昭原, 周明, 王剑晓, 等. 双碳目标下提升电力系统灵活性的市场机制综述 [J]. 中国电机工程学报, 2022, 42(21): 7746‒7764.
Wu Z Y, Zhou M, Wang J X, et al. Review on market mechanism to enhance the flexibility of power system under the dual-carbon target [J]. Proceedings of the CSEE, 2022, 42(21): 7746‒7764.
|
[43] |
熊文, 刘育权, 苏万煌, 等. 考虑多能互补的区域综合能源系统多种储能优化配置 [J]. 电力自动化设备, 2019, 39(1): 118‒126.
Xiong W, Liu Y Q, Su W H, et al. Optimal configuration of multi-energy storage in regional integrated energy system considering multi-energy complementation [J]. Electric Power Automation Equipment, 2019, 39(1): 118‒126.
|
[44] |
吴陈冰洁, 何建东, 贾艳雨. 中国石化南海北部新能源与油气耦合开发利用前景分析 [J]. 中外能源, 2023, 28(4): 15‒22.
WuChen B J, He J D, Jia Y Y. Prospects analysis of coupling development of new energy and oil-gas of SINOPEC in northern South China Sea [J]. Sino-Global Energy, 2023, 28(4): 15‒22.
|
[45] |
田玉栋, 齐悦, 张仟, 等. 油田地热新能源钻井技术经济性评价研究 [J]. 石油和化工设备, 2023, 26(1): 5‒7.
Tian Y D, Qi Y, Zhang Q, et al. Technical and economic evaluation of application of drilling geothermal new energy in oil field [J]. Petro & Chemical Equipment, 2023, 26(1): 5‒7.
|
/
〈 |
|
〉 |