
我国海洋地热能开发利用研究
Development and Utilization of Marine Geothermal Energy in China
我国海洋地热能资源丰富,尚未得到较好开发利用,如能与其他海洋资源实现融合开发利用,将对保障我国能源安全、实现“双碳”目标、建设能源强国、构建新型能源体系以及岛礁建设和深远海开发具有重要的战略意义。本文系统梳理了国内外海洋地热能利用现状,分析了我国海洋地热能利用面临的挑战,指出了我国海洋地热能利用未来的重点发展方向:海洋地热能勘探开发核心技术和关键装备、海洋地热能利用核心技术和关键装备、海洋地热能产业及产业链构建;并阐述了阶段性发展目标,提出了我国海洋地热能利用的2个典型模式:与海上稠油和海上天然气水合物融合开发的地下直接利用模式。研究建议:统筹海洋功能区划,将海洋地热能和海洋油气区块纳入国家统一规划;优先摸清南海海洋地热能及与其他海洋资源重叠优势区域分布情况;加快攻关海洋地热能开发利用核心技术和关键装备;加大对海洋地热能开发利用的财政支持力度,并给予补贴和财税优惠政策支持,充分调动企业积极性;在海洋地热能富集区开辟先导试验,积极探索与海洋其他资源融合开发示范,以此促进我国海洋地热能利用的高质量发展。
Marine geothermal energy is rich in China but have not been well developed. Integrating marine geothermal energy with other marine resources is crucial for ensuring China's energy security, realizing the carbon peak and carbon neutrality goals, strengthening the country's energy sector, building a new energy system, and promoting island and deep-sea development. This study reviews the current status of marine geothermal energy utilization in China and abroad, analyzes the challenges faced by China in marine geothermal energy utilization, and clarifies the key development directions of marine geothermal energy utilization in China: (1) core technologies and key equipment for the exploration and development of marine geothermal energy, (2) core technologies and key equipment for marine geothermal energy utilization, and (3) marine geothermal energy industry and industrial chain construction. Moreover, the study expounds on the staged development goals and proposed two typical models for marine geothermal energy utilization in China: integrated development with offshore heavy oil and with marine natural gas hydrate. Future development strategies are further proposed: (1) coordinating marine function zoning and incorporating marine geothermal energy and offshore oil and gas blocks into unified national planning; (2) pinpointing the distribution of marine geothermal energy in South China Sea and its overlapping advantages with other marine resources; (3) accelerating research on core technologies and key equipment for the development and utilization of marine geothermal energy; (4) increasing financial support and providing subsidies and preferential fiscal and tax policies to fully mobilize the enthusiasm of enterprises; and (5) conducting pilot tests in marine geothermal energy enrichment areas to explore the demonstrations of integrated development with other marine resources.
海洋地热能 / 开发利用 / 油气 / 稠油 / 天然气水合物 / 融合开发
marine geothermal energy / development and utilization / oil and gas / heavy oil / natural gas hydrate / integrated development
[1] |
王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势 [J]. 地学前缘, 2020, 27(1): 1‒9.
Wang G L, Liu Y G, Zhu X, et al. The status and development trend of geothermal resources in China [J]. Earth Science Frontiers, 2020, 27(1): 1‒9.
|
[2] |
Francesco L C. Renewable power generation costs in 2021 [R]. Abu Dhabi: International Renewable Energy Agency, 2022.
|
[3] |
Pollack H N, Hurter S J, Johnson J R. Heat flow from the Earth's interior: Analysis of the global data set [J]. Reviews of Geophysics, 1993, 31(3): 267‒280.
|
[4] |
Armani F B, Paltrinieri D. Perspectives of offshore geothermal energy in Italy [J]. EPJ Web of Conferences, 2013, 54: 02001.
|
[5] |
Liu Y G, Hou J, Chen Z X, et al. A novel natural gas hydrate recovery approach by delivering geothermal energy through dumpflooding [J]. Energy Conversion and Management, 2020, 209: 112623.
|
[6] |
刘睿贤, 田红, 窦斌. 海南地热能海水淡化可行性探讨 [J]. 海洋科学, 2020, 44(1): 46‒51.
Liu R X, Tian H, Dou B. Feasibility of seawater desalination powered by geothermal energy in Hainan [J]. Marine Sciences, 2020, 44(1): 46‒51.
|
[7] |
Liu J, Martin P F, Peter McGrail B. Rare-earth element extraction from geothermal brine using magnetic core-shell nanoparticles-techno-economic analysis [J]. Geothermics, 2021, 89: 101938.
|
[8] |
Banerjee A, Chakraborty T, Matsagar V. Evaluation of possibilities in geothermal energy extraction from oceanic crust using offshore wind turbine monopiles [J]. Renewable and Sustainable Energy Reviews, 2018, 92: 685‒700.
|
[9] |
Jamil F, Shafiq I, Sarwer A, et al. A critical review on the effective utilization of geothermal energy [J]. Energy & Environment, 2024, 35(1): 438‒457.
|
[10] |
马冰, 贾凌霄, 于洋, 等. 世界地热能开发利用现状与展望 [J]. 中国地质, 2021, 48(6): 1734‒1747.
Ma B, Jia L X, Yu Y, et al. The development and utilization of geothermal energy in the world [J]. Geology in China, 2021, 48(6): 1734‒1747.
|
[11] |
Toth A N. Geothermal utilization statistics 2019 [M]// Ali Sayigh. Comprehensive renewable energy. Amsterdam: Elsevier, 2022: 220‒234.
|
[12] |
Hiriart G, Prol‐Ledesma R M, Alcocer S, et al. Submarine geothermics; hydrothermal vents and electricity generation [R]. Bali: Proceedings World Geothermal Congress 2010, 2010.
|
[13] |
Baldur K, Maria S G, Pall V, et al. Utilization of offshore geothermal resources for power production [R]. California: Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, 2013.
|
[14] |
Sircar A, Bist N, Yadav K. A comprehensive review on exploration and exploitation of offshore geothermal energy [J]. Marine Systems & Ocean Technology, 2023, 17(3): 135‒146.
|
[15] |
Tsutomu M, Kazuo K, Taisuke F, et al. Offshore geothermal power generating system: JPH0529788B2 [P]. 1993-05-06.
|
[16] |
Shnell J H. Deep sea geothermal energy system: US8640462 [P]. 2014-02-04.
|
[17] |
多吉, 周守为, 刘清友, 等. 中国海洋地热资源潜力和开发利用战略研究 [R]. 北京: 中国海洋资源发展战略研究中心, 2023.
Duo J, Zhou S W, Liu Q Y, et al. Study on the potential and exploitation strategy of marine geothermal resources in China [R]. Beijing: China Offshore Resources Development Strategy Research Center, 2023.
|
[18] |
李锋, 邹信波, 王中华, 等. 海上稠油地热水驱提高采收率矿场实践——以珠江口盆地EP油田HJ油藏为例 [J]. 中国海上油气, 2021, 33(1): 104‒112.
Li F, Zou X B, Wang Z H, et al. Field practice of offshore heavy oil geothermal water flooding for EOR: Taking HJ reservoir in EP oilfield in Pearl River Mouth Basin as an example [J]. China Offshore Oil and Gas, 2021, 33(1): 104‒112.
|
[19] |
任韶然, 王瑞和, 张卫东, 等. 深部地热水循环开采海底水合物的方法: CN1786416A [P]. 2006-06-14.
Ren S R, Wang R H, Zhang W D, et al. The method of deep geothermal water circulation for extracting seabed hydrates: CN1786416A [P]. 2006-06-14.
|
[20] |
吴能友, 李彦龙, 万义钊, 等. 海域天然气水合物开采增产理论与技术体系展望 [J]. 天然气工业, 2020, 40(8): 100‒115.
Wu N Y, Li Y L, Wan Y Z, et al. Prospect of marine natural gas hydrate stimulation theory and technology system [J]. Natural Gas Industry, 2020, 40(8): 100‒115.
|
[21] |
孙宝江, 陈野, 王志远, 等. 利用地热开采海洋水合物藏的回型井结构及方法: CN108678724B [P]. 2019-08-13.
Sun B J, Chen Y, Wang Z Y, et al. Structure and method of circular wells for geothermal extraction of marine hydrate reservoirs: CN108678724B [P]. 2019-08-13.
|
[22] |
孙宝江, 欧维·托比亚斯·古德梅斯塔德, 李学峰, 等. 天然气水合物开采井结构: CN111271035B [P]. 2021-10-26.
Sun B J, Tobias Goodmestad O, Li X F, et al. Structure of natural gas hydrate extraction wells: CN111271035B [P]. 2021-10-26.
|
[23] |
侯健, 刘永革, 周鹏, 等. 一种利用流体循环方式动用地热能开采天然气水合物藏的方法: CN107130944B [P]. 2019-11-05.
Hou J, Liu Y G, Zhou P, et al. A method of utilizing geothermal energy through fluid circulation to extract natural gas hydrate reservoirs: CN107130944B [P]. 2019-11-05.
|
[24] |
王维希, 张春生, 吴颜雄, 等. 联合深海地热开采天然气水合物技术展望 [J]. 现代化工, 2021, 41(9): 17‒21.
Wang W X, Zhang C S, Wu Y X, et al. Prospects on technology for combining deep-sea geothermal energy with exploitation of natural gas hydrate [J]. Modern Chemical Industry, 2021, 41(9): 17‒21.
|
[25] |
穆德富, 祁影霞. 热激励的CO2置换CH4水合物的实验研究 [J]. 能源研究与信息, 2017, 33(1): 13‒18.
Mu D F, Qi Y X. Experimental study on the replacement of methane hydrate by CO2 with thermal excitation [J]. Energy Research and Information, 2017, 33(1): 13‒18.
|
[26] |
李鹏, 张旭辉, 刘乐乐, 等. 深海天然气水合物机械‒热联合开采方法研究综述 [J]. 力学学报, 2022, 54(8): 2269‒2286.
Li P, Zhang X H, Liu L L, et al. Review on the mechanical-thermal combined exploitation methods of deep sea natural gas hydrate [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2269‒2286.
|
[27] |
Khlebnikov V N, Antonov S V, Mishin A S, 等. 一种新型CO2置换CH4水合物的开采方法 [J]. 天然气工业, 2016, 36(7): 40‒47.
Khlebnikov V N, Antonov S V, Mishin A S, et al. A new method for the replacement of CH4 with CO2 in natural gas hydrate production [J]. Natural Gas Industry, 2016, 36(7): 40‒47.
|
[28] |
杨远, 肖传桃, 李永臣, 等. 基于ICP技术的天然气水合物开采方案 [J]. 中国石油勘探, 2017, 22(5): 111‒118.
Yang Y, Xiao C T, Li Y C, et al. Exploitation of natural gas hydrate based on ICP technology [J]. China Petroleum Exploration, 2017, 22(5): 111‒118.
|
[29] |
Chen X Y, Du X, Yang J, et al. Developing offshore natural gas hydrate from existing oil & gas platform based on a novel multilateral wells system: Depressurization combined with thermal flooding by utilizing geothermal heat from existing oil & gas wellbore [J]. Energy, 2022, 258: 124870.
|
[30] |
窦斌, 秦明举, 蒋国盛, 等. 利用地热开采南海天然气水合物的技术研究 [J]. 海洋地质前沿, 2011, 27(10): 49‒52, 58.
Dou B, Qin M J, Jiang G S, et al. A discussion on technology for gas hydrates production in the South China Sea using geothermal as an energy source [J]. Marine Geology Frontiers, 2011, 27(10): 49‒52, 58.
|
[31] |
陈颖, 金吉能, 兰天庆. CO2置换联合地热开采陆域可燃冰‒地质封存一体化技术 [J]. 现代化工, 2021, 41(12): 69‒73.
Chen Y, Jin J N, Lan T Q. CO2 replacement combined with geothermal-mining land combustible ice-geological storage integrated technology [J]. Modern Chemical Industry, 2021, 41(12): 69‒73.
|
[32] |
王天. 海洋泥质粉砂天然气水合物CO2置换开采特性研究 [D]. 大连: 大连理工大学 (硕士学位论文), 2022.
Wang T. Study on recovery characteristics of natural gas hydrate by CO2 replacement from marine clayey silt [D]. Dalian: Dalian University of Technology (Master's thesis), 2022.
|
[33] |
王佳贤, 刘昌岭, 宁伏龙, 等. CO2-CH4置换水合物开采方法及其强化技术研究进展 [J]. 海洋地质与第四纪地质, 2023, 43(1): 190‒204.
Wang J X, Liu C L, Ning F L, et al. Technological research progress on CO2-CH4 replacement for hydrate exploitation and enhancement [J]. Marine Geology & Quaternary Geology, 2023, 43(1): 190‒204.
|
[34] |
Sun Y F, Wang Y F, Zhong J R, et al. Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode [J]. Applied Energy, 2019, 240: 215‒225.
|
/
〈 |
|
〉 |