
煤炭与新能源融合发展场景与关键技术
Integrated Development of Coal and New Energy Sources: Scenarios and Key Technologies
煤炭与新能源融合发展对我国能源转型和能源安全稳定供应具有重要的支撑作用。本文立足我国资源禀赋并考虑能源保供与转型需求,阐述了煤炭与新能源融合发展的重要意义,系统剖析了煤炭与新能源融合发展具备的基础条件。从煤炭开发,燃煤发电,煤化工,碳捕集、利用与封存(CCUS)分别与新能源融合的4个场景角度出发,总结了当前煤炭与新能源融合的主要形式、技术特征、应用情况等。着重关注煤炭开发与新能源融合、“风光火储”联合调度、太阳能光热与燃煤发电融合、太阳能光热与CCUS融合、绿氢与煤化工融合等5类技术,深入分析了煤炭与新能源融合技术体系的发展挑战与突破方向。研究建议,将煤炭与新能源融合发展上升为国家战略,系统推进煤炭与新能源融合发展,加大煤炭与新能源科技研发力度,完善煤炭与新能源融合发展相关的财政、金融和人才支持政策。
The integrated development of coal and new energy sources is crucial for the smooth transition of China's energy system and the security and stable supply of energy. Considering China's resource endowment and its demand for energy supply security and transformation, this study elaborates on the significance and fundamental conditions regarding the integrated development of coal and new energy sources. Moreover, it summarizes the major forms, technical characteristics, and application status of the integrated development from the aspects of four scenarios: integration of coal mining, coal-fired power generation, coal chemical industry, and carbon capture, utilization and storage (CCUS) with new energy sources. Emphasis is placed on five types of technologies: integration of coal development with new energy sources; combined dispatching of wind, solar, thermal, and storage; integration of solar thermal and coal-fired power generation; integration of solar thermal power generation with CCUS; and integration of green hydrogen with the coal chemical industry. Furthermore, this study explores the key technological challenges and breakthrough directions, and proposes the following suggestions: (1) incorporating the integrated development of coal and new energy sources into national strategies; (2) formulating action goals and roadmaps to systematically support the integrated development; (3) strengthening the research and development of technologies regarding coal and new energy sources; and (4) improving fiscal, financial, and talent support policies related to the integrated development.
煤炭 / 新能源 / 融合场景 / 煤电 / 煤化工 / 碳捕集、利用与封存
coal / new energy / integration scenarios / coal power / coal chemical industry / carbon capture, utilization and storage
[1] |
国家统计局. 中国能源统计年鉴2023 [M]. 北京: 中国统计出版社, 2024.
National Bureau of Statistics. China energy statistical yearbook 2023 [M]. Beijing: China Statistics Press, 2024.
|
[2] |
张少锋, 李佳瑞, 曹语涵, 等. 西北地区煤矿与新能源融合发展实施路径研究 [J]. 煤炭工程, 2023, 55(12): 178‒183.
Zhang S F, Li J R, Cao Y H, et al. Implementation path of integrated development of coal mines and new energy in Northwest China [J]. Coal Engineering, 2023, 55(12): 178‒183.
|
[3] |
李新华. 神东矿区创建"零碳矿山"路径研究与实践 [J]. 中国煤炭, 2022, 48(11): 88‒94.
Li X H. Research and practice of construction path of "zero-carbon mine" in Shendong mining area [J]. China Coal, 2022, 48(11): 88‒94.
|
[4] |
李瑞华, 武进. 矿区多能互补近零碳供热模式研究 [J]. 中国煤炭, 2023, 49(10): 83‒87.
Li R H, Wu J. Research on multi-energy complementary near-zero carbon heating mode in mining area [J]. China Coal, 2023, 49(10): 83‒87.
|
[5] |
吴亚平. 我国煤电联营发展情况分析和措施建议 [J]. 煤炭工程, 2016, 48(12): 138‒141.
Wu Y P. Analysis and suggestion on development of coal-power joint venture in China [J]. Coal Engineering, 2016, 48(12): 138‒141.
|
[6] |
袁红. 联营的路径选择及政策建议 [J]. 中国电力企业管理, 2023 (1): 34‒37.
Yuan H. Path selection and policy suggestions of joint venture [J]. China Power Enterprise Management, 2023 (1): 34‒37.
|
[7] |
王大鑫. "两个联营"纵深推进难题待解 [J]. 中国电力企业管理, 2023 (19): 63‒65.
Wang D X. Problems to be solved in deepening the "two joint ventures" [J]. China Power Enterprise Management, 2023 (19): 63‒65.
|
[8] |
周云龙, 李婷, 杨美. 集成ORC与太阳能的燃煤机组碳捕集热力系统性能分析 [J]. 中国电机工程学报, 2023, 43(20): 7982‒7994.
Zhou Y L, Li T, Yang M. Performance of solar-coal thermal system with ORC and carbon capture [J]. Proceedings of the CSEE, 2023, 43(20): 7982‒7994.
|
[9] |
宋睿哲, 孔梦迪, 叶学民, 等. 集成碳捕集及太阳能系统的燃煤发电机组的环境评估 [J]. 动力工程学报, 2023, 43(12): 1615‒1625.
Song R Z, Kong M D, Ye X M, et al. Exergoenvironmental analysis of coal-fired power generating system integrated with carbon capture and solar energy system [J]. Journal of Chinese Society of Power Engineering, 2023, 43(12): 1615‒1625.
|
[10] |
Liu H T, Zhai R R, Patchigolla K, et al. Performance analysis of a novel combined solar trough and tower aided coal-fired power generation system [J]. Energy, 2020, 201: 117597.
|
[11] |
李雄威, 王昕, 顾佳伟, 等. 考虑火电深度调峰的风光火储系统日前优化调度 [J]. 中国电力, 2023, 56(1): 1‒7, 48.
Li X W, Wang X, Gu J W, et al. Day-ahead optimal dispatching of wind-solar-thermal power storage system considering deep peak shaving of thermal power [J]. Electric Power, 2023, 56(1): 1‒7, 48.
|
[12] |
郭燕. 考虑风光不确定性的风电 - 光伏 - 光热 - 火电联合优化调度 [D]. 兰州: 兰州理工大学(硕士学位论文), 2022.
Guo Y. Combined optimal dispatching of wind power, photovoltaic, photothermal and thermal power considering the uncertainty of scenery [D]. Lanzhou: Lanzhou University of Technology (Master's thesis), 2022.
|
[13] |
张尧翔, 刘文颖, 李潇, 等. 高比例新能源接入电网光热发电 - 火电联合调峰优化控制方法 [J]. 电力自动化设备, 2021, 41(4): 1‒7, 32.
Zhang Y X, Liu W Y, Li X, et al. Optimal control method of peak load regulation combined concentrating solar power and thermal power for power grid accessed with high proportion of renewable energy [J]. Electric Power Automation Equipment, 2021, 41(4): 1‒7, 32.
|
[14] |
刘峰, 郭林峰, 赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径 [J]. 煤炭学报, 2022, 47(1): 1‒15.
Liu F, Guo L F, Zhao L Z. Research on coal safety range and green low-carbon technology path under the dual-carbon background [J]. Journal of China Coal Society, 2022, 47(1): 1‒15.
|
[15] |
吴磊. 全球能源供应链重构与中国因应 [J]. 当代世界, 2023 (12): 30‒35.
Wu L. Reshaping of global energy supply chains and China's response [J]. Contemporary World, 2023 (12): 30‒35.
|
[16] |
Energy Institute. Statistical review of world energy data [EB/OL]. (2024-6-20)[2024-07-10]. https://www.energyinst.org/statistical-review/resources-and-data-downloads.
|
[17] |
李想, 刘全有. 深入推动能源革命 全面建设能源强国 [J]. 经济, 2023 (11): 52‒55 .
Li X, Liu Q Y. Deepen the energy revolution and build an energy power in an all-round way [J]. Economy, 2023 (11): 52‒55.
|
[18] |
黄震, 谢晓敏, 张庭婷. "双碳"背景下我国中长期能源需求预测与转型路径研究 [J]. 中国工程科学, 2022, 24(6): 8‒18.
Huang Z, Xie X M, Zhang T T. Medium-and long-term energy demand of China and energy transition pathway toward carbon neutrality [J]. Strategic Study of CAE, 2022, 24(6): 8‒18.
|
[19] |
国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报 [EB/OL]. (2024-02-29)[2024-04-25]. https://www.gov.cn/lianbo/bumen/202402/content_6934935.htm.
National Bureau of Statistics. Statistical communiqué of the People's Republic of China on the 2023 national economic and social development [EB/OL]. (2024-02-29)[2024-04-25]. https://www.gov.cn/lianbo/bumen/202402/content_6934935.htm.
|
[20] |
王利宁, 戴家权, 陆亚晨, 等. 中国经济与能源发展关系及趋势分析 [J]. 国际石油经济, 2021, 29(8): 1‒7.
Wang L N, Dai J Q, Lu Y C, et al. Research on the relationship between China's economy and energy development and its trend [J]. International Petroleum Economics, 2021, 29(8): 1‒7.
|
[21] |
中国光伏行业协会. 2022—2023年中国光伏产业年度报告 [R]. 北京: 中国光伏行业协会, 2023.
China Photovoltaic Industry Association. Annual report of China photovoltaic industry 2022—2023 [R]. Beijing: China Photovoltaic Industry Association, 2023.
|
[22] |
叶春. 能源转型下的电力燃料供需格局 [J]. 中国电力企业管理, 2022 (4): 50‒52.
Ye C. Supply and demand pattern of electric fuel under energy transformation [J]. China Power Enterprise Management, 2022 (4): 50‒52.
|
[23] |
《新型电力系统发展蓝皮书》编写组. 新型电力系统发展蓝皮书 [M]. 北京: 中国电力出版社, 2023.
Compilation Group of New Power System Development Blue Book. New power system development blue book [M]. Beijing: China Electric Power Press, 2023.
|
[24] |
符冠云. 氢能在我国能源转型中的地位和作用 [J]. 中国煤炭, 2019, 45(10): 15‒21.
Fu G Y. The status and role of hydrogen energy in China's energy transformation [J]. China Coal, 2019, 45(10): 15‒21.
|
[25] |
Fan X C, Wang W Q, Shi R J, et al. Hybrid pluripotent coupling system with wind and photovoltaic-hydrogen energy storage and the coal chemical industry in Hami, Xinjiang [J]. Renewable and Sustainable Energy Reviews, 2017, 72: 950‒960.
|
[26] |
Pai S, Zerriffi H, Jewell J, et al. Solar has greater techno-economic resource suitability than wind for replacing coal mining jobs [J]. Environmental Research Letters, 2020, 15(3): 034065.
|
[27] |
张龙. 推动煤电与新能源实质性联营 助力新型能源体系建设 [J]. 中国电力企业管理, 2023 (7): 66‒67.
Zhang L. Promote substantial joint venture between coal-fired power and new energy to help build a new energy system [J]. China Power Enterprise Management, 2023 (7): 66‒67.
|
[28] |
石志鹏, 石祥建, 蔡丹, 等. 绿电与绿氢耦合煤化工的系统建设方案 [J]. 南方能源建设, 2023, 10(3): 143‒149.
Shi Z P, Shi X J, Cai D, et al. Construction scheme for the system coupling coal chemical industry with green electricity and green hydrogen [J]. Southern Energy Construction, 2023, 10(3): 143‒149.
|
[29] |
王明华. 绿氢耦合现代煤化工发展路径研究 [J]. 中国煤炭, 2023, 49(5): 102‒107.
Wang M H. Research on the development path of modern coal chemical industry coupled by green hydrogen [J]. China Coal, 2023, 49(5): 102‒107.
|
[30] |
张贤, 杨晓亮, 鲁玺, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023) [R]. 北京: 中国21世纪议程管理中心, 全球碳捕集与封存研究院, 清华大学, 2023.
Zhang X, Yang X L, Lu X, et al. China carbon dioxide capture, utilization and storage (CCUS) annual report (2023) [R]. Beijing: China Center for Agenda 21 Management, Global Carbon Capture and Storage Research Institute, Tsinghua University, 2023.
|
[31] |
吕超贤, 孙文, 宋关羽, 等. 煤矿能源资源高效利用发展研究 [J]. 中国工程科学, 2023, 25(5): 136‒145.
Lyu C X, Sun W, Song G Y, et al. Efficient utilization of energy resources in coal mines [J]. Strategic Study of CAE, 2023, 25(5): 136‒145.
|
[32] |
Wang X X, Zhou F B, Ling Y H, et al. Overview and outlook on utilization technologies of low-concentration coal mine methane [J]. Energy & Fuels, 2021, 35(19): 15398‒15423.
|
[33] |
韩悌, 李碧君, 张振宇, 等. 风光火打捆多直流弱送端电网安全稳定防御系统研究 [J]. 电力工程技术, 2020, 39(3): 15‒22.
Han T, Li B J, Zhang Z Y, et al. Security and stability defense system for power grid with wind-photovoltaic-thermal power bundling and multi-DC weak sending-end [J]. Electric Power Engineering Technology, 2020, 39(3): 15‒22.
|
[34] |
李雄威, 王昕, 徐家豪, 等. 考虑火电深度调峰的风光火储系统分层优化调度模型 [J]. 油气与新能源, 2023, 35(6): 74‒81.
Li X W, Wang X, Xu J H, et al. A hierarchical optimal scheduling model of wind-photovoltaic-thermal-energy storage system considering deep peak shaving of thermal power [J]. Petroleum and New Energy, 2023, 35(6): 74‒81.
|
[35] |
侯宏娟, 张楠, 丁泽宇. 太阳能热与燃煤电站互补发电技术综述 [J]. 洁净煤技术, 2022, 28(11): 49‒56.
Hou H J, Zhang N, Ding Z Y. Review on solar aided coal-fired power generation [J]. Clean Coal Technology, 2022, 28(11): 49‒56.
|
[36] |
Zoschak R J, Wu S F. Studies of the direct input of solar energy to a fossil-fueled central station steam power plant [J]. Solar Energy, 1975, 17(5): 297‒305.
|
[37] |
刘骏, 陈衡, 赵淑媛, 等. 太阳能辅助碳捕集的660 MW燃煤电站出力变化研究 [J]. 动力工程学报, 2023, 43(2): 253‒261.
Liu J, Chen H, Zhao S Y, et al. Study on output variation of a 660 MW coal-fired power plant with solar-assisted carbon capture [J]. Journal of Chinese Society of Power Engineering, 2023, 43(2): 253‒261.
|
[38] |
姜锦涛, 李春曦, 董志坚, 等. 太阳能辅助燃煤碳捕集发电机组的变工况热力性能研究 [J]. 动力工程学报, 2022, 42(4): 341‒349.
Jiang J T, Li C X, Dong Z J, et al. Study on off-design thermal performance of solar-assisted coal-fired generating units with carbon capture [J]. Journal of Chinese Society of Power Engineering, 2022, 42(4): 341‒349.
|
[39] |
宋睿哲. 太阳能辅助燃煤碳捕集机组变工况分析及(火用)环境评价 [D]. 北京: 华北电力大学(硕士学位论文), 2022.
Song R Z. Off-design analysis and exergoenvironmental assessment of a carbon capture in solar assisted coal-fired power plant [D]. Beijing: North China Electric Power University (Master's thesis), 2022.
|
/
〈 |
|
〉 |