
动态省级电力CO2排放因子对区域碳达峰路径的影响
贾敏, 张立, 张哲, 宋晓晖, 姜玲玲, 蔡博峰, 赵良, 芦新波, 张泽宸, 郑海涛, 汤铃, 王金南, 舒印彪
中国工程科学 ›› 2024, Vol. 26 ›› Issue (4) : 121-133.
动态省级电力CO2排放因子对区域碳达峰路径的影响
Impacts of Dynamic Province-Level Power-Grid CO2 Emission Factor on Regional Carbon-Peaking Pathways
电力CO2排放因子是精准核算消费端间接排放的重要参数,也是准确量化消费端CO2排放路径的核心指标。本文首次探究了2020—2035年省级电力CO2排放因子的时空特征并与官方来源因子进行对比,全面整合了历史直接排放数据以及精准量化电力消费间接排放的重要性,详细预测了不同情景下2020—2035年省级电力消费间接排放及各省排放路径并量化不同时空精度电力CO2排放因子对各省排放路径的影响。研究表明:(1)2020—2035年,各省电力CO2排放因子呈现持续下降趋势,而现有公开的电力CO2排放因子与本研究省级水平相比存在差异;(2)2010—2020年,电力净调入省份的电力消费间接排放及其占比逐渐增加,北京、上海、浙江等省份占比最高;(3)在情景1和情景3(全国、省级维度因子固定不变情景)下,各省的电力消费间接排放和总排放显著高于情景2和情景4(全国、省级维度因子动态变化情景)的估算结果;情景1和情景2(全国维度因子固定不变、动态变化情景)与情景3和情景4(省级维度因子固定不变、动态变化情景)中的估算结果差异较大;对于如北京、上海、广东等电力消费间接排放占比较大的省份,选取不同空间精度的电力CO2排放因子对其排放总量影响较为明显,进一步导致相关达峰年的偏移。研究结论对支撑各省碳达峰路径规划、降低电力消费间接排放预测的不确定性具有参考价值。
The power grid CO2 emission factor is a critical parameter for accurately calculating indirect emissions from the electricity consumption side, serving as a core indicator for precisely quantifying the CO2 emission pathways at the consumption side. This study explores the temporal and spatial characteristics of the province-level power-grid CO2 emission factors from 2020 to 2035 and compares them with official-source factors. Moreover, it integrates historical direct-emission data to accurately quantify the importance of indirect emissions from the electricity consumption side. Additionally, it predicts the province-level indirect emissions and emission pathways under different scenarios from 2020 to 2035, quantifying the impacts of power grid CO2 emission factors with distinct temporal and spatial accuracies on provincial emission pathways. The results indicate that: (1) from 2020 to 2035, the power grid CO2 emission factors of all provinces are expected to exhibit sustained decreasing trends, and there are disparities between the existing publicly available power-grid CO2 emission factors and provincial levels in the study. (2) From 2010 to 2020, the indirect emissions from electricity consumption and their proportions in net electricity-importing provinces had gradually increased, with Beijing, Shanghai, and Zhejiang province having the largest proportions. (3) Under Scenarios 1 (constant power-grid CO2 emission factors on the national level) and 3 (constant power-grid CO2 emission factors on the provincial level), the indirect emissions from electricity consumption and total emissions of all provinces will be significantly higher than the estimated results in Scenarios 2 (dynamic power-grid CO2 emission factor on the national level) and 4 (dynamic power-grid CO2 emission factor on the provincial level). The estimation results of Scenarios 1 and 2 are projected to differ significantly from those of Scenarios 3 and 4. For provinces with large proportions of indirect emissions from electricity consumption, such as Beijing, Shanghai, and Guangdong, selecting power grid CO2 emission factors with different spatial accuracies is expected to have noticeable impacts on their total emissions, further leading to shifts in their peaking years. The research results can provide a reference for supporting the planning of carbon peaking pathways in various provinces and reducing the uncertainty in indirect emission forecasts.
电力CO2排放因子 / 碳达峰 / 排放路径 / 电力消费间接排放 / 省级维度
power grid CO2 emission factor / carbon peaking / emission pathway / indirect emissions from electricity consumption / province-level
[1] |
Chen Q X, Kang C Q, Ming H, et al. Assessing the low-carbon effects of inter-regional energy delivery in China's electricity sector [J]. Renewable and Sustainable Energy Reviews, 2014, 32: 671‒683.
|
[2] |
Wang J, Rodrigues J F D, Hu M M, et al. The evolution of Chinese industrial CO2 emissions 2000—2050: A review and meta-analysis of historical drivers, projections and policy goals [J]. Renewable and Sustainable Energy Reviews, 2019, 116: 109433.
|
[3] |
Yang L S, Lin B Q. Carbon dioxide-emission in China's power industry: Evidence and policy implications [J]. Renewable and Sustainable Energy Reviews, 2016, 60: 258‒267.
|
[4] |
Yan Q Y, Zhang Q, Zou X. Decomposition analysis of carbon dioxide emissions in China's regional thermal electricity generation, 2000—2020 [J]. Energy, 2016, 112: 788‒794.
|
[5] |
Peng X, Chen H, Zhong H L, et al. Water-saving co-benefits of CO2 reduction in China's electricity sector [J]. iScience, 2023, 26(2): 106035.
|
[6] |
Zhao X L, Cai Q, Zhang S F, et al. The substitution of wind power for coal-fired power to realize China's CO2 emissions reduction targets in 2020 and 2030 [J]. Energy, 2017, 120: 164‒178.
|
[7] |
Jiang X T, Su M, Li R R. Decomposition analysis in electricity sector output from carbon emissions in China [J]. Sustainability, 2018, 10(9): 3251.
|
[8] |
Chen J D, Shen L Y, Song X N, et al. An empirical study on the CO2 emissions in the Chinese construction industry [J]. Journal of Cleaner Production, 2017, 168: 645‒654.
|
[9] |
国家统计局. 2021中国能源统计年鉴 [EB/OL]. (2022-01-21)[2024-05-07]. https: //www.stats.gov.cn/sj/pcsj/jjpc/1jp/html/d2b02c. htm.
National Bureau of Statistics. Yearbook of China's energy statistics in 2021 [EB/OL]. (2022-01-21)[2024-05-07]. https: //www.stats.gov.cn/sj/pcsj/jjpc/1jp/html/d2b02c.htm.
|
[10] |
国家发展和改革委员会应对气候变化司. 中国2005年温室气体清单研究 [M]. 北京: 中国环境出版社, 2014.
Department of Climate Change, the National Development and Reform Commission. Research on China's 2005 greenhouse gas inventory [M]. Beijing: China Envrionment Publishing Group, 2014.
|
[11] |
国家发展和改革委员会办公厅. 关于做好2016、2017年度碳排放报告与核查及排放监测计划制定工作的通知 [EB/OL]. (2017-12-04)[2024-05-07]. https: //www.ndrc.gov.cn/xxgk/zcfb/tz/201712/t20171215_962618.html.
General Office of the National Development and Reform Commission. Notice on doing a good job in reporting and verification of carbon emissions and formulating emission monitoring plans for 2016 and 2017 [EB/OL]. (2017-12-04)[2024-05-07]. https: //www.ndrc.gov.cn/xxgk/zcfb/tz/201712/t20171215_962618.html.
|
[12] |
生态环境部办公厅. 关于做好2022年企业温室气体排放报告管理相关重点工作的通知 [EB/OL]. (2022-03-10)[2024-05-07]. https: //www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202203/t20220315_971468.html.
General Office of the Ministry of Ecology and Environment. Notice on the key work related to the management of corporate greenhouse gas emissions reporting in 2022 [EB/OL]. (2022-03-10) [2024-05-07]. https: //www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202203/t20220315_971468.html.
|
[13] |
生态环境部办公厅. 关于做好2023—2025年发电行业企业温室气体排放报告管理有关工作的通知 [EB/OL]. (2023-02-07)[2024-05-07]. https: //www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202302/t20230207_1015569.html.
General Office of the Ministry of Ecology and Environment. Notice on the management of greenhouse gas emissions reporting of enterprises in the power generation industry from 2023 to 2025 [EB/OL]. (2023-02-07)[2024-05-07]. https: //www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202302/t20230207_1015569.html.
|
[14] |
国家发展和改革委员会应对气候变化司. 2010年中国区域及省级电网平均二氧化碳排放因子 [R]. 北京: 国家发展和改革委员会, 2013.
Department of Climate Change, National Development and Reform Commission. Average CO2 emission factors of China's regional and provincial power grids in 2010 [R]. Beijing: National Development and Reform Commission, 2013.
|
[15] |
国家发展和改革委员会应对气候变化司. 2011年和2012年中国区域电网平均二氧化碳排放因子 [R]. 北京: 国家发展和改革委员会, 2014.
Department of Climate Change, National Development and Reform Commission. Average CO2 emission factors of China's regional power grids in 2011 and 2012 [R]. Beijing: National Development and Reform Commission, 2014.
|
[16] |
国家发展和改革委员会应对气候变化司. 二氧化碳排放核算方法及数据核查表 [R]. 北京: 国家发展和改革委员会, 2016.
Department of Climate Change, National Development and Reform Commission. Carbon dioxide emission accounting method and data checklist [R]. Beijing: National Development and Reform Commission, 2016.
|
[17] |
生态环境部. 关于商请提供2018年度省级人民政府控制温室气体排放目标责任落实情况自评估报告的函 [EB/OL]. (2020-03-23)[2024-05-07]. http: //www.ncsc.org.cn/SY/tjkhybg/202003/t20200323_770098.shtml.
Ministry of Ecology and Environment. Letter on requesting the self-assessment report on the implementation of the 2018 Provincial People's Government's responsibility for controlling greenhouse gas emissions [EB/OL]. (2020-03-23)[2024-05-07].http: //www.ncsc.org.cn/SY/tjkhybg/202003/t20200323_770098.shtml.
|
[18] |
宁礼哲, 张哲, 蔡博峰, 等. 2020年中国区域和省级电网温室气体排放因子研究 [J]. 环境工程, 2023, 41(3): 222‒228.
Ning L Z, Zhang Z, Cai B F, et al. Research on China's regional and provincial electricity ghg emission factors in 2020 [J]. Environmental Engineering, 2023, 41(3): 222‒228.
|
[19] |
马翠梅, 李士成, 葛全胜. 省级电网温室气体排放因子研究 [J]. 资源科学, 2014, 36(5): 1005‒1012.
Ma C M, Li S C, Ge Q S. Greenhouse gas emission factors for grid electricity for Chinese Provinces [J]. Resources Science, 2014, 36(5): 1005‒1012.
|
[20] |
蔡博峰, 赵良, 张哲, 等.中国区域电网二氧化碳排放因子研究(2023) [EB/OL]. (2023-10-27)[2024-05-07] http: //www.caep.org.cn/sy/tdftzhyjzx/zxdt/202310/t20231027_1044179.shtml.
Cai B F, Zhao L, Zhang Z, et al. Research on CO2 emission factors of China's regional power grids (2023) [EB/OL]. (2023-10-27) [2024-05-07]. http: //www.caep.org.cn/sy/tdftzhyjzx/zxdt/202310/t20231027_1044179.shtml.
|
[21] |
Gu A L, Zhou X Y. Emission reduction effects of the green energy investment projects of China in Belt and Road initiative countries [J]. Ecosystem Health and Sustainability, 2020, 6(1): 1747947.
|
[22] |
Finenko A, Cheah L. Carbon dioxide reduction potential in Singapore's power generation sector [J]. Energy Procedia, 2014, 61: 527‒532.
|
[23] |
Maennel A, Kim H G. Comparison of greenhouse gas reduction potential through renewable energy transition in South Korea and Germany [J]. Energies, 2018, 11(1): 206.
|
[24] |
Peng Y, Chong T, Zhang X Y, et al. Calculation of emission factors of the northwest regional grid based on linear support vector machines [J]. Journal of Physics: Conference Series, 2023, 2474(1): 012083.
|
[25] |
Schäfer M, Cerdas F, Herrmann C. Towards standardized grid emission factors: Methodological insights and best practices [J]. Energy & Environmental Science, 2024, 17(8): 2776‒2786.
|
[26] |
中国工程院.中国碳达峰碳中和战略及路径研究 [R]. 北京: 中国工程院, 2022.
Chinese Academy of Engineering. Research on China's carbon peak and carbon neutrality strategy and path [R]. Beijing: Chinese Academy of Engineering, 2022.
|
[27] |
Chen Y D, Guo F, Wang J C, et al. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100 [J]. Scientific Data, 2020, 7(1): 83.
|
[28] |
Intergovernmental Panel on Climate Change. 2006 IPCC guidelines for national greenhouse gas inventories [R]. Geneva: Intergovernmental Panel on Climate Change, 2006.
|
[29] |
Cai B F, Liang S, Zhou J, et al. China high resolution emission database (CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic data [J]. Resources, Conservation and Recycling, 2018, 129: 232‒239.
|
[30] |
蔡博峰, 曹丽斌, 雷宇, 等. 中国碳中和目标下的二氧化碳排放路径 [J]. 中国人口·资源与环境, 2021, 31(1): 7‒14.
Cai B F, Cao L B, Lei Y, et al. China's carbon emission pathway under the carbon neutrality target [J]. China Population, Resources and Environment, 2021, 31(1): 7‒14.
|
[31] |
Cai B F, Zhang L, Xia C Y, et al. A new model for China's CO2 emission pathway using the top-down and bottom-up approaches [J]. Chinese Journal of Population, Resources and Environment, 2021, 19(4): 291‒294.
|
[32] |
舒印彪, 赵勇, 赵良, 等. "双碳"目标下我国能源电力低碳转型路径 [J]. 中国电机工程学报, 2023, 43(5): 1663‒1672.
Shu Y B, Zhao Y, Zhao L, et al. Study on low carbon energy transition path toward carbon peak and carbon neutrality [J]. Proceedings of the CSEE, 2023, 43(5): 1663‒1672.
|
[33] |
Zhang L, Wu P C, Niu M C, et al. A systematic assessment of city-level climate change mitigation and air quality improvement in China [J]. Science of the Total Environment, 2022, 839: 156274.
|
/
〈 |
|
〉 |