
高温超导电缆应用场景与产业发展
Application Scenarios and Industrial Development of High-Temperature Superconducting Cables
高温超导电缆具有容量大、损耗低、自限流、环境友好等突出优点,是解决城市电网升级难题、实现高效率电力传输、赋能大容量电力应用的新兴解决方案,探讨相关产业发展兼具基础研究与工程应用价值。本文剖析了高温超导电缆的技术特点与应用要素,凝练了超级开关站、大电流专线、数据中心供电、基于新能源的电解铝与电解水制氢、集中型充电站、城市轨道交通、大容量直流电网等高温超导电缆的应用场景;从国际、国内两方面总结了高温超导电缆的研制及应用进展,尤其是全面梳理了我国的关键产品研制、关键技术研究、工程项目实施情况。进一步探讨了加强运维技术、攻克大型制冷机技术、降低工程整体造价、与传统电网设施的耦合、形成收益共享机制等高温超导电缆产业未来发展挑战,并针对性地提出了发展建议。相关内容可为高温超导电缆产业高质量发展研究提供参考。
High-temperature superconducting (HTS) cables, with their prominent advantages of large capacity, low loss, current self-limit, and environment friendliness, are a new promising solution for addressing the challenges regarding urban power grid upgrades, large-capacity power applications, and efficient power transmission. Exploring the development of related industries has both basic research and engineering application values. This study analyzes the technical characteristics and application elements of HTS cables and summarizes the application scenarios of HTS cables, including super switch stations, high-current-dedicated lines, data center power supply, electrolytic aluminum and electrolytic water hydrogen production using new energy, centralized charging stations, urban rail transit, and large-capacity direct-current power grids. Moreover, this study summarizes the development and application progress of HTS cables from both international and domestic perspectives, comprehensively reviewing the key product development, key technology research, and engineering project implementation in China. Further exploration was conducted on future development challenges, including strengthening operation and maintenance technologies, overcoming large-scale refrigeration technologies, reducing overall project costs, coupling with traditional power grid facilities, and forming a profit sharing mechanism. Targeted development suggestions are also proposed. This study is expected to provide references for the high-quality development of HTS cables.
高温超导电缆 / 高温超导带材 / 制冷机 / 智能化监控 / 应用场景 / 示范线路
high-temperature superconducting cable / high-temperature superconducting tapes / refrigerating machine / intelligent monitoring / application scenario / demonstration line
[1] |
United States Department of Energy Office of Electric Transmission and Distribution. "Grid 2030": A national vision for electricity's second 100 years [R]. Washington DC: United States Department of Energy Office of Electric Transmission and Distribution, 2003.
|
[2] |
Masuda T, Ashibe Y, Watanabe M, et al. Development of a 100 m, 3-core 114 MVA HTSC cable system [J]. Physica C: Superconductivity, 2002, 372: 1580‒1584.
|
[3] |
Ryu K S, Jo Y S, Park M. Overview of the development of the advanced power system by the applied superconductivity technologies programme in Korea [J]. Superconductor Science and Technology, 2006, 19(3): S102‒S108.
|
[4] |
Paasi J, Herrmann P F, Verhaege T, et al. Superconducting power link for power transmission and fault current limitation [J]. Physica C: Superconductivity, 2001, 354(1/2/3/4): 1‒4.
|
[5] |
Allais A, West B, Frentzas F, et al. Recent superconducting cable installation in Chicago paves the way for a resilient electric grid (REG) [C]. Rome: 27th International Conference on Electricity Distribution (CIRED 2023), 2023.
|
[6] |
Prusseit W, Bach R. The Munich superlink project [J]. Transformers Magazine, 2021, 8(S5): 38‒43.
|
[7] |
Allais A, Saugrain J M, West B, et al. SuperRail—World-first HTS cable to be installed on a railway network in France [J]. IEEE Transactions on Applied Superconductivity, 2024, 34(3): 1‒7.
|
[8] |
Lee C, Son H, Won Y, et al. Progress of the first commercial project of high-temperature superconducting cables by KEPCO in Korea [J]. Superconductor Science Technology, 2020, 33(4): 044006.
|
[9] |
Mimura T, Masuda T, Yaguchi H, et al. Recent progress of the high-temperature superconducting cable project in Japan [J]. Journal of Physics: Conference Series, 2019, 1293(1): 012066.
|
[10] |
国网上海市电力公司. 超导电缆在城市电网中的应用 [M]. 北京: 中国电力出版社, 2021.
State Grid Shanghai Electric Power Company. Application of superconducting cables in urban power grid [M]. Beijing: China Electric Power Press, 2021.
|
[11] |
McCall J. 超级安全电网(SSG)技术 [J]. 电网与清洁能源, 2009, 25(12): 8‒10, 15.
Mccall J. Secure super grids [J]. Power System and Clean Energy, 2009, 25(12): 8‒10, 15.
|
[12] |
马国栋. 电线电缆载流量 [M]. 北京: 中国电力出版社, 2003.
Ma G D. Ampacity of wire & cable [M]. Beijing: China Electric Power Press, 2003.
|
[13] |
蔡传兵, 杨召, 郭艳群. 新型电力传输材料——REBaCuO高温超导涂层导体 [J]. 物理, 2020, 49(11): 747‒754.
Cai C B, Yang Z, Guo Y Q. The new power transmission material—REBaCuO high-temperature superconducting coated conductor [J]. Physics, 2020, 49(11): 747‒754.
|
[14] |
Gouge M J, Demko J A, McConnell B W, et al. Cryogenics assessment report [R]. Oak Ridge: Oak Ridge National Laboratory, 2002.
|
[15] |
Han Y W, Zong X H, Xie W. Cooling system for China's 35 kV/2.2 kA/1.2 km high-temperature superconducting cable achieves two-year successful operation [J]. Superconductivity, 2024, 10: 100100.
|
[16] |
Huang Y H, Wang B, Zhou S H, et al. Modeling and experimental study on combination of foam and variable density multilayer insulation for cryogen storage [J]. Energy, 2017, 123: 487‒498.
|
[17] |
Wang B, Huang Y H, Li P, et al. Optimization of variable density multilayer insulation for cryogenic application and experimental validation [J]. Cryogenics, 2016, 80: 154‒163.
|
[18] |
Neumann H. Concept for thermal insulation arrangement within a flexible cryostat for HTS power cables [J]. Cryogenics, 2004, 44(2): 93‒99.
|
[19] |
Dye S A, Tyler P N, Mills G L, et al. Wrapped multilayer insulation design and testing [J]. Cryogenics, 2014, 64: 100‒104.
|
[20] |
Adachi K, Ohnishi H, Hironaga R, et al. Design of 22 kV 10 kA HTS triaxial superconducting bus [J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1‒4.
|
[21] |
姚同路, 吴伟, 杨勇, 等. "双碳"目标下中国钢铁工业的低碳发展分析 [J]. 钢铁研究学报, 2022, 34(6): 505‒513.
Yao T L, Wu W, Yang Y, et al. Analysis on low-carbon development of China's steel industry under "dual-carbon" goal [J]. Journal of Iron and Steel Research, 2022, 34(6): 505‒513.
|
[22] |
王文, 罗秋菊, 吴学渊, 等. 雄安城市计算中心中压AC直转通信DC+磷酸铁锂电池储能系统的应用探索 [J]. 建筑科学, 2023, 39(1): 84‒92.
Wang W, Luo Q J, Wu X Y, et al. Application exploration of medium voltage AC direct communication DC+lithium iron phosphate battery energy storage system in Xiongan Urban Computing Center [J]. Building Science, 2023, 39(1): 84‒92.
|
[23] |
韩正英, 曹樱. 再生铝应用与发展前景分析 [J]. 有色金属加工, 2023, 52(3): 6‒7, 17.
Han Z Y, Cao Y. Analysis on application and development prospect of recycled aluminum [J]. Nonferrous Metals Processing, 2023, 52(3): 6‒7, 17.
|
[24] |
光伏发电直流接入电解铝生产用电获重大突破 [J]. 铝加工, 2023 (3): 43.
Significant breakthrough in direct current connection of photovoltaic power generation to electrolytic aluminum production [J]. Aluminum Fabrication, 2023 (3): 43.
|
[25] |
邱传武. 600 kA大型铝电解槽稳定运行实践分析 [J]. 有色冶金节能, 2019, 35(4): 31‒36.
Qiu C W. Practice analysis on stable operation of large aluminum electrolytic cell with 600 kA [J]. Energy Saving of Nonferrous Metallurgy, 2019, 35(4): 31‒36.
|
[26] |
张琨, 王旋. 降低铝电解槽母线系统压接压降的探讨 [J]. 有色冶金节能, 2018, 34(2): 18‒22.
Zhang K, Wang X. Discussion on reducing contact voltage of aluminum reduction cells busbar system [J]. Energy Saving of Nonferrous Metallurgy, 2018, 34(2): 18‒22.
|
[27] |
曹志成, 桂卫华, 谢永芳. 超导电缆在铝电解系列上的应用 [J]. 中国科技信息, 2011 (19): 100, 102.
Cao Z C, Gui W H, Xie Y F. Application of superconducting cable in aluminum electrolysis series [J]. China Science and Technology Information, 2011 (19): 100, 102.
|
[28] |
陈颖. 电解水制氢技术的研究现状及未来发展趋势 [J]. 太阳能, 2024 (1): 5‒11.
Chen Y. Research status and future development trend of hydrogen production by water electrolysis [J]. Solar Energy, 2024 (1): 5‒11.
|
[29] |
李政, 陈思源, 董文娟, 等. 碳约束条件下电力行业低碳转型路径研究 [J]. 中国电机工程学报, 2021, 41(12): 3987‒4000.
Li Z, Chen S Y, Dong W J, et al. Low carbon transition pathway of power sector under carbon emission constraints [J]. Proceedings of the CSEE, 2021, 41(12): 3987‒4000.
|
[30] |
高赐威, 张亮. 电动汽车充电对电网影响的综述 [J]. 电网技术, 2011, 35(2): 127‒131.
Gao C W, Zhang L. A survey of influence of electrics vehicle charging on power grid [J]. Power System Technology, 2011, 35(2): 127‒131.
|
[31] |
朱继忠, 何晨可, 陈婧韵, 等. 综合能源系统环境下电动汽车充换电设施规划综述 [J]. 南方电网技术, 2022, 16(1): 14‒32.
Zhu J Z, He C K, Chen J Y, et al. Overview of electric vehicle charging and swapping facilities planning under the environment of integrated energy system [J]. Southern Power System Technology, 2022, 16(1): 14‒32.
|
[32] |
杨亚璪, 宾涛. 电动汽车集中型充电站选址定容模型 [J].交通运输系统工程与信息, 2024 (3): 204‒212.
Yang Y Z, Bin T. Electric vehicle centralized charging station siting and capacity modeling [J]. Journal of Transportation Systems Engineering and Information Technology, 2024 (3): 204‒212.
|
[33] |
薛飞, 雷宪章, 张野飚, 等. 电动汽车与智能电网从V2G到B2G的全新结合模式 [J]. 电网技术, 2012, 36(2): 29‒34.
Xue F, Lei X Z, Zhang Y B, et al. A brand-new approach of connecting electrical vehicles with smart grid from vehicle-to-grid mode to battery-to-grid mode [J]. Power System Technology, 2012, 36(2): 29‒34.
|
[34] |
Tomita M, Fukumoto Y, Suzuki K, et al. Development of prototype DC superconducting cable for railway system [J]. Physica C: Superconductivity and Its Applications, 2010, 470: 1007‒1008.
|
[35] |
Tomita M, Fukumoto Y, Ishihara A, et al. Train running test transmitted by superconducting feeder cable and study as an example of line in Japan and France [J]. IEEE Transactions on Applied Superconductivity, 2020, 30(2): 1‒7.
|
[36] |
徐龙威, 孙媛媛, 马钊, 等. 低压直流供用电系统电压等级研究 [J]. 供用电, 2022, 39(8): 1‒14.
Xu L W, Sun Y Y, Ma Z, et al. Study on voltage level in low voltage direct current supply and utilization system [J]. Distribution & Utilization, 2022, 39(8): 1‒14.
|
[37] |
郑健, 宗曦华, 韩云武. 超导电缆在电网工程中的应用 [J]. 低温与超导, 2020, 48(11): 27‒31, 50.
Zheng J, Zong X H, Han Y W. Application of superconducting cable in power grid [J]. Cryogenics & Superconductivity, 2020, 48(11): 27‒31, 50.
|
[38] |
Sinha U K, Lindsay D T, Hughey R L, et al. Development and test of world's first industrial high temperature superconducting (HTS) power cable [C]. Columbus: 2001 IEEE Power Engineering Society Winter Meeting, 2001.
|
[39] |
Weber C S, Reis C T, Dada A, et al. Overview of the underground 34.5 kV HTS power cable program in Albany, NY [J]. IEEE Transactions on Appiled Superconductivity, 2005, 15(2): 1793‒1797.
|
[40] |
Demko J A, Nielsen C T, Sauers I, et al. Triaxial HTS cable for the AEP bixby project [J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2047‒2050.
|
[41] |
Maguire J, Folts D, Yuan J, et al. Development and demonstration of a fault current limiting HTS cable to be installed in the con Edison grid [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1740‒1743.
|
[42] |
Maguire J F, Schmidt F, Hamber F, et al. Development and demonstration of a long length HTS cable to operate in the long island power authority transmission grid [J]. IEEE Transactions on Appiled Superconductivity, 2005, 15(2): 1787‒1792.
|
[43] |
Wang Z, Lyu Z N, Yu P, et al. Research status of high temperature superconducting power cable [C]. Changchun: 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), 2022.
|
[44] |
Mukoyama S, Yagi M, Yonemura T, et al. Model cable tests for a 275 kV 3 kA HTS power cable [J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 976‒979.
|
[45] |
Yamaguchi S, Ivanov Y, Watanabe H, et al. Construction and 1st experiment of the 500 meter and 1000 meter DC superconducting power cable in Ishikari [J]. Physics Procedia, 2016, 81: 182‒186.
|
[46] |
Tixador P. Development of superconducting power devices in Europe [J]. Physica C: Superconductivity and Its Applications, 2010, 470(20): 971‒979.
|
[47] |
Herzog F, Kutz T, Stemmle M, et al. Cooling unit for the Ampa City project—One year successful operation [J]. Cryogenics, 2016, 80: 204‒209.
|
[48] |
Huang R T, Chen J, Liu Z Y, et al. Artificial flux pinning in MOD-REBCO coated conductors with thick superconducting layer [J]. IEEE Transactions on Applied Superconductivity, 2024, 34(3): 3343334.
|
[49] |
Jiang G Y, Zhao Y, Zhu J M, et al. Recent development and mass production of high J e 2G-HTS tapes by using thin hastelloy substrate at Shanghai superconductor technology [J]. Superconductor Science and Technology, 2020, 33(7): 074005.
|
[50] |
韩云武, 黄逸佳, 陈志越, 等. 真空容器用的间隔条: CN111412384A [P]. 2020-07-14.
Han Y W, Huang Y J, Chen Z Y, et al. Spacer bars for vacuum packagings: CN111412384A [P]. 2020-07-14.
|
[51] |
张大义, 王天龙, 田祥, 等. 一种超导电缆冷缩补偿机构、方法和超导电缆系统: CN116130165B [P]. 2023-06-27.
Zhang D Y, Wang T L, Tian X, et al. A superconducting cable cold shrink compensation mechanism, method and superconducting cable system: CN116130165B [P]. 2023-06-27.
|
[52] |
Li J Q, Tan J, Zha R, et al. Investigation of a coaxial stirling-type pulse tube cryocooler with the cooling capacity of 600 W at 77 K [J]. IOP Conference Series: Materials Science and Engineering, 2019, 502: 012032.
|
[53] |
Xue R J, Tan J, Zhao B J, et al. Thermodynamic characteristics of a single-stage stirling-type pulse tube cryocooler capable of 1220 W at 77 K with two cold fingers driven by one linear compressor [J]. Energy, 2023, 278: 127968.
|
[54] |
徐坤, 于天刚, 蔡俊杰, 等. 常规路径公里级35 kV高温超导电缆的牵放施工 [J]. 建筑施工, 2022, 44(3): 572‒575.
Xu K, Yu T G, Cai J J, et al. Conventional path kilometre level 35 kV high temperature superconducting cable traction construction [J]. Building Construction, 2022, 44(3): 572‒575.
|
[55] |
陈妍君, 邓孟华, 王斌, 等. 上海超导电缆继电保护策略及方案 [J]. 电力与能源, 2023, 44(4): 340‒343, 363.
Chen Y J, Deng M H, Wang B, et al. Strategy and scheme of Shanghai superconducting cable relay protection technology [J]. Power & Energy, 2023, 44(4): 340‒343, 363.
|
[56] |
李洁, 刘宜平, 史越, 等. 标准化助力第二代高温超导带材产业化 [J]. 中国标准化, 2021 (S1): 87‒93.
Li J, Liu Y P, Shi Y, et al. Standardization supports the industrialization of the second-generation high temperature superconducting taps [J]. China Standardization, 2021(S1): 87‒93.
|
[57] |
Zhang X Z, Xie W, Zheng J, et al. Research on fault prediction and diagnosis of superconducting system based on deep learning [C]. Shenyang: 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), 2021.
|
[58] |
侯波, 叶锋, 吴娟, 等. 35 kV/2 kA 高温超导电缆系统现场安装、调试和运行缺陷分析 [J]. 低温与超导, 2006, 34(4): 293‒298.
Hou B, Ye F, Wu J, et al. The analysis of 35 kV/2 kA HTS cable system site installation, trial and operation fault [J]. Cryogenics & Superconductivity, 2006, 34(4): 293‒298.
|
[59] |
滕玉平, 肖立业, 戴少涛, 等. 10.5 kV/1.5 kA高温超导电缆绝缘设计及加工 [J]. 电线电缆, 2005 (2): 19‒21, 24.
Teng Y P, Xiao L Y, Dai S T, et al. Design and process of the insulation system for a 10.5 kV, 1.5 kA HTS cable [J]. Wire & Cable, 2005 (2): 19‒21, 24.
|
[60] |
魏东, 宗曦华, 徐操, 等. 35 kV 2000 A低温绝缘高温超导电力电缆示范工程 [J]. 电线电缆, 2015 (1): 1‒3, 5.
Wei D, Zong X H, Xu C, et al. Demonstration project of 35 kV 2000 A cold dielectric high temperature superconductive power cable system [J]. Wire & Cable, 2015 (1): 1‒3, 5.
|
[61] |
Zong X H, Han Y W, Huang C Q. Introduction of 35 kV kilometer-scale high-temperature superconducting cable demonstration project in Shanghai [J]. Superconductivity, 2022, 2: 100008.
|
[62] |
陈妍君, 邓孟华, 周佳卿, 等. 备自投装置在上海超导电缆中的应用 [J]. 电气应用, 2022, 41(7): 17‒21.
Chen Y J, Deng M H, Zhou J Q, et al. Application of automatic switchover device in superconducting cable project in Shanghai [J]. Electrotechnical Application, 2022, 41(7): 17‒21.
|
[63] |
毕延芳, 洪辉, 信赢. 高温超导电力应用的低温冷却系统及制冷机 [J]. 中国科学: 技术科学, 2013, 43(10): 1101‒1111.
Bi Y F, Hong H, Xin Y. Cryogenic cooling system and refrigerator for high temperature superconducting power application [J]. Scientia Sinica Technologica, 2013, 43(10): 1101‒1111.
|
[64] |
刘立强. 大型氦低温制冷机研制进展 [J]. 真空与低温, 2020, 26(6): 471‒475.
Liu L Q. Development of large helium cryo-plants [J]. Vacuum and Cryogenics, 2020, 26(6): 471‒475.
|
[65] |
李威. 高温超导体发展前景 [J]. 世界科学, 2023 (8): 11‒13.
Li W. Development prospect of high temperature superconductors [J]. World Science, 2023 (8): 11‒13.
|
[66] |
张国民, 陈建辉, 邱清泉, 等. 超导直流能源管道的研究进展 [J]. 电工技术学报, 2021, 36(21): 4389‒4398, 4428.
Zhang G M, Chen J H, Qiu Q Q, et al. Research progress on the superconducting DC energy pipeline [J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4389‒4398, 4428.
|
/
〈 |
|
〉 |