老年人智慧医疗领域语音生物标记物应用研究

韩舒羽, 王文霞, 杨宇帆, 王小萌, 张雯敏, 单锶楷, 陈思烨, 王志稳

中国工程科学 ›› 2024, Vol. 26 ›› Issue (6) : 56-64.

PDF(657 KB)
PDF(657 KB)
中国工程科学 ›› 2024, Vol. 26 ›› Issue (6) : 56-64. DOI: 10.15302/J-SSCAE-2024.06.003
我国人口老龄化与医学卫生健康事业发展

老年人智慧医疗领域语音生物标记物应用研究

作者信息 +

Application of Vocal Biomarkers in the Field of Intelligent Medical Care for Older Adults

Author information +
History +

摘要

在我国人口老龄化形势严峻、老年人健康问题具有普遍性和复杂性的情况下,应用人工智能技术推动老年人智慧医疗领域发展成为重要趋势。本文聚焦语音生物标记物在老年人智慧医疗领域中的应用和发展问题,系统梳理了语音生物标记物在医疗领域中的典型应用、国际上对语音生物标记物发展的支持情况和我国语音生物标记物研究与应用面临的挑战,总结了老年人智慧医疗领域语音生物标记物的6个重点研究方向,包括明确并构建老年人语音生物标记物指标体系、研发语音生物标记物设备和工具并制定相关研究规范、深化老年人语音特征和语音生物标记物关联健康结局机制的基础研究、加强语音生物标记物相关健康变量预测模型的研究、推动语音生物标记物辅助疾病诊断和临床决策的研究与应用、建立语音生物标记物大型人群队列及数据平台。研究建议,鼓励语音生物标记物相关法律研究及行业标准制定,注重跨学科人才队伍建设,在保障数据安全的前提下推进数据共享,优化语音生物标记物大型人群队列及数据平台的管理,以促进老年人智慧医疗领域语音生物标记物的技术探索、应用研究和产业升级。

Abstract

Under the circumstances of severe population aging as well as prevalent and complex health problems among older adults, applying artificial intelligence technologies to promote the development of intelligent medical care for older adults has become a significant trend. This study focuses on the application of vocal biomarkers in intelligent medical care for older adults. It summarizes the typical applications of vocal biomarkers in medical care, international development support for vocal biomarker application, and challenges faced by the research and application of vocal biomarkers in China. It also proposes key research directions for vocal biomarkers in the field of intelligent medical care, including (1) clarifying and establishing an indicator system for vocal biomarkers of older adult; (2) developing equipment and tools for vocal biomarkers and formulating relevant research standards; (3) deepening basic research on the mechanisms by which vocal characteristics and vocal biomarkers are associated with health outcomes of older adults; (4) strengthening research on prediction models of health outcomes related to vocal biomarkers; (5) promoting the research and application of vocal biomarkers in assisting disease diagnosis and clinical decision-making; and (6) establishing a large population cohort and data platform for vocal biomarkers. Furthermore, the following development recommendations are proposed: (1) encouraging legal research and industry standards formulation related to vocal biomarkers, (2) focusing on the construction of interdisciplinary teams, (3) promoting data sharing while ensuring data security, and (4) optimizing the management of the large population cohort and data platform for vocal biomarkers. This study is expected to provide a basic reference for the technology exploration, application research, and industrial upgrading of vocal biomarkers in the field of intelligent medical care for older adults.

关键词

人口老龄化 / 智慧医疗 / 健康管理 / 语音生物标记物 / 跨学科融合

Keywords

aging population / intelligent medical care / health management / vocal biomarker / interdisciplinary integration

引用本文

导出引用
韩舒羽, 王文霞, 杨宇帆. 老年人智慧医疗领域语音生物标记物应用研究. 中国工程科学. 2024, 26(6): 56-64 https://doi.org/10.15302/J-SSCAE-2024.06.003

参考文献

[1]
国家统计局‍‍. 第七次全国人口普查公报 [EB/OL]‍. (2021-05-11)[2024-05-12]‍. https://www‍.‍gov‍.‍cn/guoqing/2021-05/13/content_5606149‍.htm‍.
National Bureau of Statistics‍. Bulletin of the seventh national census [EB/OL]‍. (2021-05-12)[2024-05-12]‍. https://www‍.gov‍.cn/guoqing/2021-05/13/content_5606149‍.htm‍.
[2]
中华人民共和国国家卫生健康委员会‍. 2021年我国卫生健康事业发展统计公报 [EB/OL]‍. (2022-07-12)‍[2024-05-12]‍. https://www‍.gov‍.cn/xinwen/2022-07/12/content_5700670‍.htm‍.
National Health Commission of the People's Republic of China‍. Statistical bulletin on Chinese health care development in 2021 [EB/OL]‍. (2022-07-12)[2024-05-12]‍. https://www‍.gov‍.cn/xinwen/2022-07/12/content_5700670‍.htm‍.
[3]
World Health Organization‍. Life expectancy at birth (years) [EB/OL]‍. (2020-07-20)[2024-05-12]‍. https://data‍.‍who‍.int/indicators/i/90E2E48‍.
[4]
中国健康与养老追踪调查 [EB/OL]‍. (2024-03-20)[2024-05-12]‍. https://charls‍.pku‍.edu‍.cn/‍.
China health and retirement longitudinal study [EB/OL]‍. (2024-03-20)[2024-05-12]‍. https://charls‍.pku‍.edu‍.cn/‍.
[5]
向运华, 王晓慧‍. 人工智能时代老年健康管理的重塑与聚合 [J]‍. 武汉大学学报(哲学社会科学版), 2020, 73(2): 101‒112‍.
Xiang Y H, Wang X H‍. On the aggregation and reshaping of health management for the elderly in the age of artificial intelligence [J]‍. Wuhan University Journal (Philosophy & Social Science), 2020, 73(2): 101‒112‍.
[6]
Sara J D S, Orbelo D, Maor E, et al‍. Guess what we can hear—Novel voice biomarkers for the remote detection of disease [J]‍. Mayo Clinic Proceedings, 2023, 98(9): 1353‒1375‍.
[7]
Tracey B, Patel S, Zhang Y, et al‍. Voice biomarkers of recovery from acute respiratory illness [J]‍. IEEE Journal of Biomedical and Health Informatics, 2022, 26(6): 2787‒2795‍.
[8]
Hamdan A L, Jabbour J, Nassar J, et al‍. Vocal characteristics in patients with type 2 diabetes mellitus [J]‍. European Archives of Otorhinolaryngology, 2012, 269(5): 1489‒1495‍.
[9]
Hajjar I, Okafor M, Choi J D, et al‍. Development of digital voice biomarkers and associations with cognition, cerebrospinal biomarkers, and neural representation in early Alzheimer's disease [J]‍. Alzheimer's & Dementia, 2023, 15(1): e12393‍.
[10]
Hartley A, Khamis R‍. Voice biomarkers: The most modern and least invasive tool for coronary assessment? [J]‍. Mayo Clinic Proceedings, 2022, 97(5): 816‒818‍.
[11]
Dashtipour K, Tafreshi A, Lee J, et al‍. Speech disorders in Parkinson's disease: Pathophysiology, medical management and surgical approaches [J]‍. Neurodegenerative Disease Management, 2018, 8(5): 337‒348‍.
[12]
李妍, 周爱红, 赵丽娜, 等‍. 轻度阿尔茨海默病患者自发语言特点研究 [J]‍. 中华神经科杂志, 2019, 52(3): 177‒183‍.
Li Y, Zhou A H, Zhao L N, et al‍. Features of connected speech in patients with mild Alzheimer's disease [J]‍. Chinese Journal of Neurology, 2019, 52(3): 177‒183‍.
[13]
刘红艳‍. 阿尔茨海默症患者语言障碍研究现状和进展——基于病理语言学的实验研究综述 [J]‍. 外语电化教学, 2020 (5): 11, 72‒78‍.
Liu H Y‍. Studies on Alzheimer's patients' language impairments—An overview of experimental studies within the framework of pathological linguistics [J]‍. Technology Enhanced Foreign Language Education, 2020 (5): 11, 72‒78‍.
[14]
黄立鹤, 杨晶晶‍. 汉语阿尔茨海默病患者口语非流利性研究 [J]‍. 当代语言学, 2022, 24(2): 192‒207‍.
Huang L H, Yang J J‍. An analysis of oral non-fluency of Chinese DAT patients [J]‍. Contemporary Linguistics, 2022, 24(2): 192‒207‍.
[15]
Ahn K, Cho M, Kim S W, et al‍. Deep learning of speech data for early detection of Alzheimer's disease in the elderly [J]‍. Bioengineering, 2023, 10(9): 1093‍.
[16]
Konig A, Satt A, Sorin A, et al‍. Use of speech analyses within a mobile application for the assessment of cognitive impairment in elderly people [J]‍. Current Alzheimer Research, 2018, 15(2): 120‒129‍.
[17]
Lin Y C, Yan H T, Lin C H, et al‍. Predicting frailty in older adults using vocal biomarkers: A cross-sectional study [J]‍. BMC Geriatrics, 2022, 22(1): 549‍.
[18]
Tsai F S, Weng Y M, Ng C J, et al‍. Embedding stacked bottleneck vocal features in a LSTM architecture for automatic pain level classification during emergency triage [C]‍. San Antonio: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), 2017‍.
[19]
de Vasconcelos C A, Vieira M N, Kecklund G, et al‍. Speech analysis for fatigue and sleepiness detection of a pilot [J]‍. Aerospace Medicine and Human Performance, 2019, 90(4): 415‒418‍.
[20]
Kiss G, Vicsi K‍. Mono- and multi-lingual depression prediction based on speech processing [J]‍. International Journal of Speech Technology, 2017, 20(4): 919‒935‍.
[21]
Marmar C R, Brown A D, Qian M, et al‍. Speech-based markers for posttraumatic stress disorder in US veterans [J]‍. Depression and Anxiety, 2019, 36(7): 607‒616‍.
[22]
Xu R, Mei G, Zhang G F, et al‍. A voice-based automated system for PTSD screening and monitoring [J]‍. Studies in Health Technology and Informatics, 2012, 173: 552‒558‍.
[23]
Guidi A, Schoentgen J, Bertschy G, et al‍. Features of vocal frequency contour and speech rhythm in bipolar disorder [J]‍. Biomedical Signal Processing and Control, 2017, 37: 23‒31‍.
[24]
Kiran Reddy M, Helkkula P, Madhu Keerthana Y, et al‍. The automatic detection of heart failure using speech signals [J]‍. Computer Speech & Language, 2021, 69: 101205‍.
[25]
Maor E, Perry D, Mevorach D, et al‍. Vocal biomarker is associated with hospitalization and mortality among heart failure patients [J]‍. Journal of the American Heart Association, 2020, 9(7): e013359‍.
[26]
陈春凤, 王忆勤, 徐琎, 等‍. 342例肺系疾病患者的语音信号采集和特征分析 [J]‍. 上海医药, 2022, 43(14): 21‒25‍.
Chen C F, Wang Y Q, Xu J, et al‍. Voice signal acquisition and characteristic analysis of 342 patients with pulmonary diseases [J]‍. Shanghai Medical & Pharmaceutical Journal, 2022, 43(14): 21‒25‍.
[27]
U‍.S‍. National Science Foundation‍. NSF 23-614: Smart health and biomedical research in the era of artificial intelligence and advanced data science (SCH) [EB/OL]‍. (2023-08-14)[2024-05-12]‍. https://www‍.nsf‍.gov/pubs/2023/nsf23614/nsf23614‍.htm‍.
[28]
National Institutes of Health‍. Data generation projects for the NIH bridge to artificial intelligence (Bridge2AI) program (OT2) [EB/OL]‍. (2021-05-13)[2024-05-12]‍. https://commonfund‍.nih‍.gov/sites/default/files/OT2-Data-Generation-Projects-B2AI-051321-508‍.pdf‍.
[29]
惠仲阳, 杨况骏瑜‍. 日本发布《人工智能战略2022》 [EB/OL]‍. (2022-09-27)[2024-05-12]‍. http://www‍.‍casisd‍.‍cn/zkcg/ydkb/kjzcyzxkb/2022/zczxkb202206/202209/t20220927_6517785‍.html‍.
Hui Z Y, Yang K J Y‍. Japan releases artificial intelligence strategy 2022 [EB/OL]‍. (2022-09-27)[2024-05-12]‍. http://www‍.casisd‍.cn/zkcg/ydkb/kjzcyzxkb/2022/zczxkb202206/202209/t20220927_6517785‍.html‍.
[30]
The Japanese Cabinet‍. Japan revitalization strategy 2016 [EB/OL]‍. (2016-06-02)[2024-05-12]‍. https://www‍.kantei‍.go‍.jp/jp/singi/keizaisaisei/pdf/2016_hombun1_e‍.pdf‍.
[31]
胡智慧‍. 日本科学技术创新综合战略2016提出五大政策措施 [EB/OL]‍. (2016-08-02)[2024-05-12]‍. http://www‍.casisd‍.cn/zkcg/ydkb/kjzcyzxkb/2016/201608/201703/t20170330_4768733‍.html‍.
Hu Z H‍. Japanese comprehensive strategy for science, technology and innovation 2016 proposes five major policy measures [EB/OL]‍. (2016-08-02)[2024-05-12]‍. http://www‍.casisd‍.cn/zkcg/ydkb/kjzcyzxkb/2016/201608/201703/t20170330_4768733‍.html‍.
[32]
葛春雷‍. 德国发布《人工智能行动计划》 [EB/OL]‍. (2023-11-20)[2024-05-12]‍. http://www‍.‍casisd‍.‍cn/zkcg/ydkb/kjzcyzxkb/2023/zczxkb202310/202311/t20231120_6934950‍.html‍.
Ge C L‍. Germany releases artificial intelligence action plan [EB/OL]‍. (2023-11-20)[2024-05-12]‍. http://www‍.casisd‍.cn/zkcg/ydkb/kjzcyzxkb/2023/zczxkb202310/202311/t20231120_6934950‍.html‍.
[33]
葛春雷‍. "德国高技术战略2025"明确未来三大领域12项使命 [EB/OL]‍. (2018-11-13)‍[2024-05-12]‍. http://www‍.casisd‍.cn/zkcg/ydkb/kjzcyzxkb/2018/kjzczx201811/201811/t20181113_5170584‍.html‍.
Gu C L‍. "German high-tech strategy 2025" defines 12 missions in three major fields for the future [EB/OL]‍. (2018-11-13)[2024-05-12]‍. http://www‍.casisd‍.cn/zkcg/ydkb/kjzcyzxkb/2018/kjzczx201811/201811/t20181113_5170584‍.html‍.
[34]
葛春雷‍. 德国联邦政府通过AI战略要点文件 [EB/OL]‍. (2018-09-07)[2024-05-12]‍. http://www‍.casisd‍.cn/zkcg/ydkb/kjzcyzxkb/2018/zczxkb201809/201809/t20180907_5065796‍.html‍.
Ge C L‍. The German federal government adopts a key document on artificial intelligence strategy [EB/OL]‍. (2018-09-07)‍[2024-05-12]‍. http://www‍.casisd‍.cn/zkcg/ydkb/kjzcyzxkb/2018/zczxkb201809/201809/t20180907_5065796‍.html‍.
[35]
Ministers Department of Health and Aged Care‍. $73 million for new medical technology and research facilities [EB/OL]‍. (2023-06-26)[2024-05-12]‍. https://www‍.health‍.gov‍.au/ministers/the-hon-mark-butler-mp/media/73-million-for-new-medical-technology-and-research-facilities?language=en‍.
[36]
Australian Government Department of Health and Aged Care‍. Budget 2022-23: Investments in life-saving health and medical research [EB/OL]‍. (2022-04-04)[2024-05-12]‍. https://www‍.health‍.gov‍.au/news/mrff-budget-2022-23-investments-in-life-saving-health-and-medical-research‍.
[37]
Australian Government Department of Industry, Science and Resources‍. Australia's artificial intelligence action plan [EB/OL]‍. (2021-08-18)[2024-05-12]‍. https://www‍.industry‍.gov‍.au/data-and-publications/australias-artificial-intelligence-action-plan‍.
[38]
姜晓华‍. 智能语音技术的法律规制研究 [J]‍. 学术探索, 2023 (4): 67‒72‍.
Jiang X H‍. Research on legal regulation of intelligent sound technology [J]‍. Academic Exploration, 2023 (4): 67‒72‍.
[39]
Wilkinson M D, Dumontier M, Aalbersberg I J, et al‍. The FAIR guiding principles for scientific data management and stewardship [J]‍. Scientific Data, 2016, 3: 160018‍.
[40]
梁丹, 李佳佳‍. 如何让青年教师快步走上科研路——北大医学部打造青年科技创新发展平台的实践 [ N]‍. 中国教育报, 2024-01-19(03)‍.
Liang D, Li J J‍. How to enable young faculties to quickly embark on the path of scientific research—The practice of Peking University Health Science Center in building a technological innovation and development platform for young faculties [N]‍. China Education Daily, 2024-01-19(03)‍.
[41]
McMahan H B, Moore E, Ramage D, et al‍. Communication-efficient learning of deep networks from decentralized data [EB/OL]‍. (2023-01-26)[2024-02-20]‍. http://arxiv‍.org/abs/1602‍.05629v4‍.
[42]
王鑫, 黄伟口, 孙凌云‍. 跨机构联邦学习的激励机制综述 [J]‍. 计算机科学, 2024, 51(3): 20‒29‍.
Wang X, Huang W K, Sun L Y‍. Survey of incentive mechanism for cross-silo federated learning [J]‍. Computer Science, 2024, 51(3): 20‒29‍.
基金
中国工程院咨询项目“应对人口老龄化国家战略相关问题研究”(2022-XBZD-30)
PDF(657 KB)

Accesses

Citation

Detail

段落导航
相关文章

/