
重大突发传染病智能化主动监测预警系统设计研究
刘民, 梁万年, 胡健, 康良钰, 景文展, 蔡康宁, 戚晓鹏, 刘德兵, 王全意
中国工程科学 ›› 2024, Vol. 26 ›› Issue (6) : 65-76.
重大突发传染病智能化主动监测预警系统设计研究
Design of an Intelligent Active Surveillance and Early Warning System for Infectious Diseases
建设智能化传染病主动监测预警系统是应对重大突发传染病疫情的必然要求、发展传染病监测预警技术的必然趋势、提高传染病监测预警能力的必然选择,提升重大突发传染病监测预警的科学性、及时性、准确性,需要智能化主动监测预警系统的支持。本文探讨了智能化传染病主动监测预警系统建设的必要性,系统梳理了国内外传染病监测预警系统建设现状和存在的问题;提出了重大突发传染病智能化主动监测预警系统的设计框架,涵盖多渠道主动监测、智能化早期预警、数据驱动的风险评估、智慧化处置与评估四大功能模块。在相关系统建设过程中,多源数据融合、智能早期预警、风险多维研判、智慧处置评估等关键技术攻关取得了一定进展,为系统构建和初步应用提供了坚实支撑。未来,需要多学科的协同合作来完善、维护和优化重大突发传染病智能化主动监测预警系统,为重大新发突发传染病防控提供更有效的手段,更好地预防和控制传染病的传播。
Developing an intelligent active surveillance and early warning system for infectious diseases is crucial for responding to major infectious disease outbreaks, advancing surveillance technologies, and enhancing monitoring and warning capabilities. An intelligent active surveillance and early warning system is also essential for realizing the scientific, timely, and accurate monitoring and early warning of major infectious disease outbreaks. This study examines the necessity of establishing an intelligent active surveillance and early warning system for infectious diseases, outlines the current status and existing problems of infectious disease surveillance and early warning systems both in China and abroad, and proposes a design framework for the intelligent active surveillance and early warning system for infectious disease outbreaks. The proposed system encompasses four key functional modules: multi-channel active surveillance, intelligent early warning, data-driven risk assessment, and smart response and evaluation. Progress has been made in developing critical technologies such as multi-source data fusion, intelligent early warning, multidimensional risk assessment, and smart disposal evaluation, thus providing a solid technical foundation for the system's construction and application. In the future, continued multidisciplinary collaboration is required to progressively establish and optimize this system, and this system will provide more effective tools for preventing and controlling the spread of major and emerging infectious diseases.
传染病 / 监测预警系统 / 人工智能 / 大数据 / 自然语言处理
infectious disease / surveillance and early warning system / artificial intelligence / big data / natural language processing
[1] |
Baker R E, Mahmud A S, Miller I F, et al. Infectious disease in an era of global change [J]. Nature Reviews Microbiology, 2022, 20: 193‒205.
|
[2] |
Schumacher A E, Kyu H H, Aali A, et al. Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950—2021, and the impact of the COVID-19 pandemic: A comprehensive demographic analysis for the global burden of disease study 2021 [J]. The Lancet, 2024, 403(10440): 1989‒2056.
|
[3] |
詹思延. 流行病学(第8版) [M]. 北京: 人民卫生出版社, 2017.
Zhan S Y. Epidemiology (8th edition) [M]. Beijing: People's Medical Publishing House, 2017.
|
[4] |
Yang W Z. Early warning for infectious disease outbreak theory and practice [M]. London: Academic Press, 2017.
|
[5] |
中国医学科学院北京协和医学院群医学及公共卫生学院, 北京大学公共卫生学院, 中国疾病预防控制中心传染病管理处, 等. 传染病多点触发智慧化监测预警系统关键技术专家共识 [J]. 中华医学杂志, 2024, 104(32): 2995‒3009.
School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, School of Public Health, Peking University, Department of Management on Infectious Diseases, Chinese Center for Disease Control and Prevention, et al. Expert consensus on the key technologies for a multi-point trigger intelligent surveillance and early warning system for infectious diseases [J]. National Medical Journal of China, 2024, 104(32): 2995‒3009.
|
[6] |
Brownstein J S, Rader B, Astley C M, et al. Advances in artificial intelligence for infectious-disease surveillance [J]. New England Journal of Medicine, 2023, 388(17): 1597‒1607.
|
[7] |
McClymont H, Lambert S B, Barr I, et al. Internet-based surveillance systems and infectious diseases prediction: An updated review of the last 10 years and lessons from the COVID-19 pandemic [J]. Journal of Epidemiology and Global Health, 2024, 14(3): 645‒657.
|
[8] |
Gu D Y, He J N, Sun J, et al. The global infectious diseases epidemic information monitoring system: Development and usability study of an effective tool for travel health management in China [J]. JMIR Public Health and Surveillance, 2021, 7(2): e24204.
|
[9] |
Kogan N E, Clemente L, Liautaud P, et al. An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time [J]. Science Advances, 2021, 7(10): eabd6989.
|
[10] |
Zhang T, Yang L Y, Fan Z L, et al. Comparison between threshold method and artificial intelligence approaches for early warning of respiratory infectious diseases—Weifang City, Shandong Province, China, 2020—2023 [J]. China CDC Weekly, 2024, 6(26): 635‒641.
|
[11] |
Athanasiou M, Fragkozidis G, Zarkogianni K, et al. Long short-term memory-based prediction of the spread of influenza-like illness leveraging surveillance, weather, and twitter data: Model development and validation [J]. Journal of Medical Internet Research, 2023, 25: e42519.
|
[12] |
Jin W Q, Dong S Q, Yu C Q, et al. A data-driven hybrid ensemble AI model for COVID-19 infection forecast using multiple neural networks and reinforced learning [J]. Computers in Biology and Medicine, 2022, 146: 105560.
|
[13] |
Bhatia S, Lassmann B, Cohn E, et al. Using digital surveillance tools for near real-time mapping of the risk of infectious disease spread [J]. NPJ Digital Medicine, 2021, 4(1): 73.
|
[14] |
国务院. 国务院关于印发新一代人工智能发展规划的通知 [EB/OL]. (2017-07-20)[2024-08-25]. https://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.
The State Council of the People's Republic of China. Notice of the State Council on issuing the development plan on the new generation of artificial intelligence [EB/OL]. (2017-07-20)[2024-08-25]. https://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.
|
[15] |
Budd J, Miller B S, Manning E M, et al. Digital technologies in the public-health response to COVID-19 [J]. Nature Medicine, 2020, 26(8): 1183‒1192.
|
[16] |
国务院. 关于推动疾病预防控制事业高质量发展的指导意见 [EB/OL]. (2023-12-26)[2024-08-26]. https://www.gov.cn/zhengce/content/202312/content_6922483.htm.
The State Council of the People's Republic of China. Guiding opinions on promoting high-quality development of disease control and prevention undertakings [EB/OL]. (2023-12-26)[2024-08-26]. https://www.gov.cn/zhengce/content/202312/content_6922483.htm.
|
[17] |
Jiao Z T, Ji H R, Yan J, et al. Application of big data and artificial intelligence in epidemic surveillance and containment [J]. Intelligent Medicine, 2023, 3(1): 36‒43.
|
[18] |
Wu J Y, Xie X W, Yang L, et al. Mobile health technology combats COVID-19 in China [J]. Journal of Infection, 2021, 82(1): 159‒198.
|
[19] |
国家疾病预防控制局. 关于印发《关于建立健全智慧化多点触发传染病监测预警体系的指导意见》的通知 [EB/OL]. (2024-08-23)[2024-09-05]. https://www.gov.cn/zhengce/zhengceku/202408/content_6971481.htm.
National Disease Control And Prevention Administration. Notice on the guiding opinions on establishing and improving the intelligent multi-point triggering infectious disease surveillance and early warning system [EB/OL]. (2024-08-23)[2024-09-05]. https://www.gov.cn/zhengce/zhengceku/202408/content_6971481.htm.
|
[20] |
杨维中, 兰亚佳, 吕炜, 等. 建立我国传染病智慧化预警多点触发机制和多渠道监测预警机制 [J]. 中华流行病学杂志, 2020, 41(11): 1753‒1757.
Yang W Z, Lan Y J, Lyu W, et al. Establishment of multi-point trigger and multi-channel surveillance mechanism for intelligent early warning of infectious diseases in China [J]. Chinese Journal of Epidemiology, 2020, 41(11): 1753‒1757.
|
[21] |
Wu J W, Jiao X K, Du X H, et al. Assessment of the benefits of targeted interventions for pandemic control in China based on machine learning method and web service for COVID-19 policy simulation [J]. Biomedical and Environmental Sciences, 2022, 35(5): 412‒418.
|
[22] |
Ziegler T, Moen A, Zhang W Q, et al. Global influenza surveillance and response system: 70 years of responding to the expected and preparing for the unexpected [J]. The Lancet, 2022, 400(10357): 981‒982.
|
[23] |
黄硕, 刘才兄, 邓源, 等. 世界主要国家和地区传染病监测预警实践进展 [J]. 中华流行病学杂志, 2022, 43(4): 591‒597.
Huang S, Liu C X, Deng Y, et al. Progress in the practice of surveillance and early warning of infectious diseases in major countries and regions [J]. Chinese Journal of Epidemiology, 2022, 43(4): 591‒597.
|
[24] |
MacIntyre C R, Chen X, Kunasekaran M, et al. Artificial intelligence in public health: The potential of epidemic early warning systems [J]. Journal of International Medical Research, 2023, 51(3): 3000605231159335.
|
[25] |
Shausan A, Nazarathy Y, Dyda A. Emerging data inputs for infectious diseases surveillance and decision making [J]. Frontiers in Digital Health, 2023, 5: 1131731.
|
[26] |
Carter D, Stojanovic M, Hachey P, et al. Global public health surveillance using media reports: Redesigning GPHIN [J]. Studies in Health Technology and Informatics, 2020, 270: 843‒847.
|
[27] |
MacIntyre C R, Lim S, Quigley A. Preventing the next pandemic: Use of artificial intelligence for epidemic monitoring and alerts [J]. Cell Reports Medicine, 2022, 3(12): 100867.
|
[28] |
Gould D W, Walker D, Yoon P W. The evolution of BioSense: Lessons learned and future directions [J]. Public Health Reports, 2017, 132(1 suppl): 7S‒11S.
|
[29] |
Fanelli A, Schnitzler J C, De Nardi M, et al. Epidemic intelligence data of Crimean-Congo haemorrhagic fever, European Region, 2012 to 2022: A new opportunity for risk mapping of neglected diseases [J]. Euro Surveillance, 2023, 28(16): 2200542.
|
[30] |
European Centre for Disease Prevention and Control. EpiPulse—The European surveillance portal for infectious diseases [EB/OL]. (2021-06-22)[2024-08-22]. https://www.ecdc.europa.eu/en/publications-data/epipulse-european-surveillance-portal-infectious-diseases.
|
[31] |
Carrion M, Madoff L C. ProMED-mail: 22 years of digital surveillance of emerging infectious diseases [J]. International Health, 2017, 9(3): 177‒183.
|
[32] |
World Health Organization. EWARS in a box: Quick start guide [M]. Geneva: World Health Organization, 2023.
|
[33] |
Centers for Disease Control and Prevention. About national syndromic surveillance program (NSSP) [EB/OL]. (2024-04-23)[2024-11-10]. https://www.cdc.gov/nssp/php/about/index.html.
|
[34] |
Burkom H, Loschen W, Wojcik R, et al. Electronic surveillance system for the early notification of community-based epidemics (ESSENCE): Overview, components, and public health applications [J]. JMIR Public Health and Surveillance, 2021, 7(6): e26303.[35] Wang L D, Wang Y, Jin S G, et al. Emergence and control of infectious diseases in China [J]. The Lancet, 2008, 372(9649): 1598‒1605.
|
[36] |
Xiong W Y, Lv J, Li L M. A survey of core and support activities of communicable disease surveillance systems at operating-level CDCs in China [J]. BMC Public Health, 2010, 10: 704.
|
[37] |
Yang W Z, Li Z J, Lan Y J, et al. A nationwide web-based automated system for outbreak early detection and rapid response in China [J]. Western Pacific Surveillance and Response Journal, 2011, 2(1): 10‒15.
|
[38] |
Zhang H L, Wang L P, Lai S J, et al. Surveillance and early warning systems of infectious disease in China: From 2012 to 2014 [J]. The International Journal of Health Planning and Management, 2017, 32(3): 329‒338.
|
[39] |
陈涛, 杨静, 韩雅俊, 等. 2010—2016年度中国流感监测网络质量评估结果分析研究 [J]. 中国人兽共患病学报, 2023, 39(2): 140‒146.
Chen T, Yang J, Han Y J, et al. Influenza surveillance network quality evaluation in China, 2010—2016 [J]. Chinese Journal of Zoonoses, 2023, 39(2): 140‒146.
|
[40] |
新华社. 我国传染病网络直报系统已覆盖约8.4万家医疗机构 [EB/OL]. (2024-07-07)[2024-08-22]. https://www.gov.cn/lianbo/bumen/202407/content_6961797.htm.
Xinhua News Agency. China's infectious disease direct reporting system has covered 84,000 medical institutions [EB/OL]. (2024-07-07)[2024-08-22]. https://www.gov.cn/lianbo/bumen/202407/content_6961797.htm.
|
[41] |
赵自雄, 赵嘉, 马家奇. 我国传染病监测信息系统发展与整合建设构想 [J]. 疾病监测, 2018, 33(5): 423‒427.
Zhao Z X, Zhao J, Ma J Q. Conception of an integrated information system for notifiable disease communicable surveillance in China [J]. Disease Surveillance, 2018, 33(5): 423‒427.
|
[42] |
Wong Z S Y, Zhou J Q, Zhang Q P. Artificial intelligence for infectious disease big data analytics [J]. Infection, Disease & Health, 2019, 24(1): 44‒48.
|
[43] |
Milinovich G J, Williams G M, Clements A C A, et al. Internet-based surveillance systems for monitoring emerging infectious diseases [J]. The Lancet Infectious Diseases, 2014, 14(2): 160‒168.
|
[44] |
Xu L, Zhou C, Luo S T, et al. Modernising infectious disease surveillance and an early-warning system: The need for China's action [J]. The Lancet Regional Health Western Pacific, 2022, 23: 100485.
|
[45] |
Kang L Y, Hu J, Cai K N, et al. The intelligent infectious disease active surveillance and early warning system in China: An application of dengue prevention and control [J]. Global Transitions, 2024, 6: 249‒255.
|
[46] |
樊明锁, 李宁, 车洋, 等. 基于主索引的疾病监测系统的构建应用 [J]. 中国卫生信息管理杂志, 2023, 20(4): 576‒580.
Fan M S, Li N, Che Y, et al. Construction and application of disease monitoring system based on main index [J]. Chinese Journal of Health Informatics and Management, 2023, 20(4): 576‒580.
|
[47] |
Zhu E W, Sheng Q L, Yang H W, et al. A unified framework of medical information annotation and extraction for Chinese clinical text [J]. Artificial Intelligence in Medicine, 2023, 142: 102573.
|
[48] |
Li C F, Ma K. Entity recognition of Chinese medical text based on multi-head self-attention combined with BILSTM-CRF [J]. Mathematical Biosciences and Engineering, 2022, 19(3): 2206‒2218.
|
[49] |
Shen Y, Liu Y H, Jiao X K, et al. Knowledge graph: Applications in tracing the source of large-scale outbreak—Beijing municipality, China, 2020—2021 [J]. China CDC Weekly, 2023, 5(4): 90‒95.
|
[50] |
Pan M Y, Shen Y, Wang Y, et al. Comparison of three influenza surveillance data sources for timely detection of epidemic onset—Chengdu City, Sichuan Province and Beijing municipality, China, 2017—2023 [J]. China CDC Weekly, 2024, 6(36): 918‒923.
|
[51] |
World Health Organization. Research response to pathogen X during a pandemic [EB/OL]. (2024-01-19)[2024-11-10]. https://www.who.int/news-room/events/detail/2024/01/19/default-calendar/Research-response-to-pathogen-X-during-a-pandemic.
|
/
〈 |
|
〉 |