长江上游流域水文干旱历史演变及未来预估

王云, 李文鑫, 张建云, 刘翠善, 阮俞理, 虞畅, 金君良, 王国庆, 贺瑞敏

中国工程科学 ›› 2024, Vol. 26 ›› Issue (6) : 157-168.

PDF(1156 KB)
PDF(1156 KB)
中国工程科学 ›› 2024, Vol. 26 ›› Issue (6) : 157-168. DOI: 10.15302/J-SSCAE-2024.06.011
健康水平衡构建与国土高质量保护利用战略

长江上游流域水文干旱历史演变及未来预估

作者信息 +

Historical Evolution and Future Prediction of Hydrological Droughts in the Upper Yangtze River Basin

Author information +
History +

摘要

受全球气候变化影响,长江流域水文干旱事件频发且强度不断增加,严重威胁粮食安全和经济发展。本文利用水量平衡(RCCC-WBM)模型,分析了长江上游直门达、朱沱、寸滩、宜昌4个水文站及以上流域的水文要素历史演变和未来发展趋势,并基于标准化径流指数(SRI)识别了长江上游流域的水文干旱事件及特征。结果表明:① 1961—2020年,朱沱、寸滩和宜昌3个水文站的径流量及对应长江上游干流区、岷沱江、嘉陵江及乌江各子流域的SRI均呈减少趋势,即微弱变旱化趋势,而直门达水文站径流及以上金沙江流域SRI呈增加趋势,即无旱化趋势。② 2021—2090年,各水文站及以上流域SRI均呈增大趋势,说明长江上游流域未来呈无旱化趋势,这可能与未来预估降水、径流大幅增加密切相关;未来水文干旱频次、频率、历时及烈度均表现为近期较强,远期较弱。鉴于长江上游流域极端水文干旱现象日益显著,防旱减灾工作紧迫,建议完善抗旱机制体制,提升基础设施建设和应急管理能力,强化数字技术赋能,构建智慧防旱减灾体系并突出创新驱动,以强化防旱减灾科技支撑。

Abstract

Under the influence of global climate change, hydrological drought events in the Yangtze River have occurred frequently with an increasing intensity, seriously threatening food security and economic development. This study uses the monthly water balance model developed by the Research Center for Climate Change (i.e., the RCCC-WBM model) to analyze the historical evolution and future trends of hydrological features in four hydrological stations (Zhimenda, Zhutuo, Cuntan, and Yichang) in the upper reaches of the Yangtze River and the basins above. Meanwhile, hydrological drought events and their characteristics are identified based on the Standardized Runoff Index (SRI). The results show that: (1) From 1961 to 2020, the runoffs of Zhutuo, Cuntan, and Yichang hydrological stations, along with the SRI of the main stream area in the upper reaches of the Yangtze River and the sub-basins of the Minjiang, Tuojiang, Jialing, and Wujiang River, exhibited a decreasing trend, indicating a slight drying trend, while the runoff of the Zhimenda hydrological station and the SRI of the Jinsha River basin above it showed an increasing trend, suggesting no drought tendency. (2) From 2021 to 2090, the SRI of each hydrological station and its upstream basins all showed an increasing trend, indicating that the upper reaches of the Yangtze River have no drought tendency in the future; this may be closely related to the significant increase in projected precipitation and runoff. The frequency, occurrence rate, duration, and intensity of hydrological droughts will be stronger in the near term and weaker in the long term. Given the increasingly prominent extreme hydrological droughts in the upper reaches of the Yangtze River, drought prevention and disaster reduction becomes urgent. It is recommended to improve the drought combating mechanism and system, strengthen infrastructure construction and emergency management capabilities, promote the digital technology to build a smart drought-prevention and disaster-reduction system, and highlight technological innovation to strengthen the scientific and technological support for drought prevention and mitigation.

关键词

长江上游流域 / 水文干旱 / CMIP6 / RCCC-WBM模型 / 标准化径流指数

Keywords

upper Yangtze River basin / hydrological drought / CMIP6 / RCCC-WBM model / Standardized Runoff Index

引用本文

导出引用
王云, 李文鑫, 张建云. 长江上游流域水文干旱历史演变及未来预估. 中国工程科学. 2024, 26(6): 157-168 https://doi.org/10.15302/J-SSCAE-2024.06.011

参考文献

[1]
姜大膀, 王娜‍. IPCC AR6报告解读: 水循环变化 [J]‍‍. 气候变化研究进展, 2021, 17(6): 699‒704‍.
Jiang D B, Wang N‍. Water cycle changes: Interpretation of IPCC AR6 [J]‍. Climate Change Research, 2021, 17(6): 699‒704‍.
[2]
周波涛, 钱进‍. IPCC AR6报告解读: 极端天气气候事件变化 [J]‍. 气候变化研究进展, 2021, 17(6): 713‒718‍.
Zhou B T, Qian J‍. Changes of weather and climate extremes in the IPCC AR6 [J]‍. Climate Change Research, 2021, 17(6): 713‒718‍.
[3]
夏军, 陈进, 佘敦先‍. 2022年长江流域极端干旱事件及其影响与对策 [J]‍. 水利学报, 2022, 53(10): 1143‒1153‍.
Xia J, Chen J, She D X‍. Impacts and countermeasures of extreme drought in the Yangtze River basin in 2022 [J]‍. Journal of Hydraulic Engineering, 2022, 53(10): 1143‒1153‍.
[4]
邹旭恺, 高荣, 陈鲜艳, 等‍. 2022年长江流域夏伏旱监测评估 [J]‍. 中国防汛抗旱, 2022, 32(10): 12‒16‍.
Zou X K, Gao R, Chen X Y, et al‍. Monitoring and assessment of summer drought in the Yangtze River basin in 2022 [J]‍. China Flood & Drought Management, 2022, 32(10): 12‒16‍.
[5]
李曈, 王文, 蔡晓军‍. 2013年长江中下游夏季高温干旱演变过程及环流异常成因简析 [J]‍. 气象科学, 2017, 37(4): 505‒513‍.
Li T, Wang W, Cai X J‍. Evolution and abnormal causes for high temperature and drought in the middle and lower reaches of Yangtze River in summer of 2013 [J]‍. Journal of the Meteorological Sciences, 2017, 37(4): 505‒513‍.
[6]
李俊, 袁媛, 王遵娅, 等‍. 2019年长江中下游伏秋连旱演变特征 [J]‍. 气象, 2020, 46(12): 1641‒1650‍.
Li J, Yuan Y, Wang Z Y, et al‍. Evolution characteristics of continuous drought in late summer and autumn in the middle and lower reaches of Yangtze River valley in 2019 [J]‍. Meteorological Monthly, 2020, 46(12): 1641‒1650‍.
[7]
梅梅, 高歌, 李莹, 等‍. 1961—2022年长江流域高温干旱复合极端事件变化特征 [J]‍. 人民长江, 2023, 54(2): 12‒20‍.
Mei M, Gao G, Li Y, et al‍. Change characteristics in compound high temperature and drought extreme events over Yangtze River basin from 1961 to 2022 [J]‍. Yangtze River, 2023, 54(2): 12‒20‍.
[8]
胡玉厚, 邱忠恩, 陈明华‍. 长江上游水资源开发与中下游经济、社会、环境发展的关系 [J]‍. 人民长江, 1993, 24(6): 12‒16, 61‒62‍.
Hu Y H, Qiu Z E, Chen M H‍. Upper Yangtze water resources development and its impact on middle—Lower Yangtze economy, society and environment [J]‍. Yangtze River, 1993, 24(6): 12‒16, 61‒62‍.
[9]
Brleković T, Tadić L‍. Hydrological drought assessment in a small lowland catchment in Croatia [J]‍. Hydrology, 2022, 9(5): 79‍.
[10]
杨肖丽, 崔周宇, 任立良, 等‍. 1966—2015年长江流域水文干旱时空演变归因 [J]‍. 水科学进展, 2023, 34(3): 349‒359‍.
Yang X L, Cui Z Y, Ren L L, et al‍. Patterns and attributions of hydrological drought in the Yangtze River basin from 1966 to 2015 [J]‍. Advances in Water Science, 2023, 34(3): 349‒359‍.
[11]
Chen S D, Zhang L P, Liu X, et al‍. The use of SPEI and TVDI to assess temporal-spatial variations in drought conditions in the middle and lower reaches of the Yangtze River basin, China [J]‍. Advances in Meteorology, 2018, 2018: 9362041‍.
[12]
刘君龙, 袁喆, 许继军, 等‍. 长江流域气象干旱演变特征及未来变化趋势预估 [J]‍. 长江科学院院报, 2020, 37(10): 28‒36‍.
Liu J L, Yuan Z, Xu J J, et al‍. Meteorological drought evolution characteristics and future trends in the Yangtze River basin [J]‍. Journal of Yangtze River Scientific Research Institute, 2020, 37(10): 28‒36‍.
[13]
张午朝, 高冰, 马育军‍. 长江流域1961—2015年不同等级干旱时空变化分析 [J]‍. 人民长江, 2019, 50(2): 53‒57‍.
Zhang W Z, Gao B, Ma Y J‍. Temporal and spatial variation characteristics of different drought grades from1961 to 2015 in Yangtze River basin [J]‍. Yangtze River, 2019, 50(2): 53‒57‍.
[14]
李帅, 曾凌, 张存杰, 等‍. 长江上游近120年来气象干旱和水文干旱时空变化关系及其传递特征 [J]‍. 气候变化研究进展, 2023, 19(3): 263‒277‍.
Li S, Zeng L, Zhang C J, et al‍. Spatio-temporal variations and propagation from meteorological to hydrological drought in the Upper Yangtze River basin over last 120 years [J]‍. Climate Change Research, 2023, 19(3): 263‒277‍.
[15]
Sun F Y, Mejia A, Zeng P, et al‍. Projecting meteorological, hydrological and agricultural droughts for the Yangtze River basin [J]‍. Science of the Total Environment, 2019, 696: 134076‍.
[16]
郑博福, 肖德利, 万炜, 等‍. 长江流域干旱评估指标、时空特征及成因研究进展 [J]‍. 水资源保护, 2024, 40(5): 18‒28‍.
Zheng B F, Xiao D L, Wan W, et al‍. Research progress on assessment indicators, spatio-temporal characteristics and causes of drought in the Yangtze River basin [J]‍. Water Resources Protection, 2024, 40(5): 18‒28‍.
[17]
郭海晋, 陈玺‍. 长江上游径流持续偏枯地区贡献度及成因研究 [J]‍. 水资源研究, 2017, 6(4): 309‒316‍.
Guo H J, Chen X‍. Spatial contribution and cause analysis for runoff decreasing in the upstream of Yangtze River [J]‍. Journal of Water Resources Research, 2017, 6(4): 309‒316‍.
[18]
刘玉婷, 许继军, 刘思敏, 等‍. 长江上游地区生态需水量变化研究 [J]‍. 水利水电技术(中英文), 2021, 52(8): 120‒131‍.
Liu Y T, Xu J J, Liu S M, et al‍. Study on change of eco-water demand in region of Upper Yangtze River [J]‍. Water Resources and Hydropower Engineering, 2021, 52(8): 120‒131‍.
[19]
秦鹏程, 刘敏, 杜良敏, 等‍. 气候变化对长江上游径流影响预估 [J]‍. 气候变化研究进展, 2019, 15(4): 405‒415‍.
Qin P C, Liu M, Du L M, et al‍. Climate change impacts on runoff in the Upper Yangtze River basin [J]‍. Climate Change Research, 2019, 15(4): 405‒415‍.
[20]
何奇芳‍. 长江上游地区气象水文过程时空演变及未来情景预估 [D]‍. 武汉: 华中科技大学(硕士学位论文), 2018‍.
He Q F‍. Temporal and spatial evolution of meteorological and hydrological processes in the upper reaches of the Yangtze River and prediction of future scenarios [D]‍. Wuhan: Huazhong University of Science and Technology (Master's thesis), 2018‍.
[21]
舒章康, 李文鑫, 张建云, 等‍. 中国极端降水和高温历史变化及未来趋势 [J]‍. 中国工程科学, 2022, 24(5): 116‒125‍.
Shu Z K, Li W X, Zhang J Y, et al‍. Historical changes and future trends of extreme precipitation and high temperature in China [J]‍. Strategic Study of CAE, 2022, 24(5): 116‒125‍.
[22]
Luo N, Guo Y, Gao Z B, et al‍. Assessment of CMIP6 and CMIP5 model performance for extreme temperature in China [J]‍. Atmospheric and Oceanic Science Letters, 2020, 13(6): 589‒597‍.
[23]
王予, 李惠心, 王会军, 等‍. CMIP6全球气候模式对中国极端降水模拟能力的评估及其与CMIP5的比较 [J]‍. 气象学报, 2021, 79(3): 369‒386‍.
Wang Y, Li H X, Wang H J, et al‍. Evaluation of CMIP6 model simulations of extreme precipitation in China and comparison with CMIP5 [J]‍. Acta Meteorologica Sinica, 2021, 79(3): 369‒386‍.
[24]
Shukla S, Wood A W‍. Use of a standardized runoff index for characterizing hydrologic drought [J]‍. Geophysical Research Letters, 2008, 35(2): L02405‍.
[25]
石朋, 詹慧婕, 瞿思敏, 等‍. 黄河源区气象干旱与水文干旱关联性分析 [J]‍. 水资源保护, 2022, 38(3): 80‒86‍.
Shi P, Zhan H J, Qu S M, et al‍. Correlation analysis of meteorological and hydrological droughts in Yellow River source region [J]‍. Water Resources Protection, 2022, 38(3): 80‒86‍.
[26]
吴桂炀, 陈杰, 陈启会, 等‍. 金沙江流域近50年气象水文干旱时空变化特征 [J]‍. 人民长江, 2019, 50(11): 84‒90‍.
Wu G Y, Chen J, Chen Q H, et al‍. Spatiotemporal variation of hydro-meteorological drought in Jinsha River basin in recent 50 years [J]‍. Yangtze River, 2019, 50(11): 84‒90‍.
[27]
邵进, 李毅, 宋松柏‍. 标准化径流指数计算的新方法及其应用 [J]‍. 自然灾害学报, 2014, 23(6): 79‒87‍.
Shao J, Li Y, Song S B‍. New computing method for standardized runoff index and its application [J]‍. Journal of Natural Disasters, 2014, 23(6): 79‒87‍.
[28]
Liang H X, Zhang D, Wang W S, et al‍. Evaluating future water security in the Upper Yangtze River basin under a changing environment [J]‍. Science of the Total Environment, 2023, 889: 164101‍.
[29]
李昱, 席佳, 张弛, 等‍. 气候变化对澜湄流域气象水文干旱时空特性的影响 [J]‍. 水科学进展, 2021, 32(4): 508‒519‍.
Li Y, Xi J, Zhang C, et al‍. Impact of climate change on the spatio-temporal characteristics of meteorological and hydrological drought over the Lancang‒Mekong River basin [J]‍. Advances in Water Science, 2021, 32(4): 508‒519‍.
[30]
Ju X P, Wang Y K, Wang D, et al‍. A time-varying drought identification and frequency analyzation method: A case study of Jinsha River basin [J]‍. Journal of Hydrology, 2021, 603: 126864‍.
[31]
赵建华, 王国庆, 张建云, 等‍. RCCC-WBM水量平衡模型在北方典型流域的适用性研究 [J]‍. 水文, 2018, 38(2): 25‒29, 14‍.
Zhao J H, Wang G Q, Zhang J Y, et al‍. Suitability of RCCC-WBM model to typical river catchments in North China [J]‍. Journal of China Hydrology, 2018, 38(2): 25‒29, 14‍.
[32]
鞠琴, 高慧滨, 王国庆, 等‍. 基于能量平衡原理的潜在蒸散发模型构建 [J]‍. 水科学进展, 2022, 33(5): 794‒804‍.
Ju Q, Gao H B, Wang G Q, et al‍. Modeling potential evapotranspiration based on energy balance [J]‍. Advances in Water Science, 2022, 33(5): 794‒804‍.
[33]
管晓祥, 刘悦, 张成凤, 等‍. RCCC-WBM模型区域适用性及参数敏感性分析 [J]‍. 水文, 2020, 40(2): 55‒61‍.
Guan X X, Liu Y, Zhang C F, et al‍. Regional suitability and parameter sensitivity analysis of RCCC-WBM [J]‍. Journal of China Hydrology, 2020, 40(2): 55‒61‍.
[34]
张丹, 梁瀚续, 何小聪, 等‍. 基于CMIP6的金沙江流域径流及水文干旱预估 [J]‍. 水资源保护, 2023, 39(6): 53‒62‍.
Zhang D, Liang H X, He X C, et al‍. Estimation of runoff and hydrological drought in the Jinsha River basin based on CMIP6 [J]‍. Water Resources Protection, 2023, 39(6): 53‒62‍.
[35]
张强, 王港, 赵佳琪, 等‍. 亚洲水塔水循环和水资源研究进展与展望 [J]‍. 科学通报, 2023, 68(36): 4982‒4994‍.
Zhang Q, Wang G, Zhao J Q, et al‍. Water circulation and water resources of Asia's water tower: The past and future [J]‍. Chinese Science Bulletin, 2023, 68(36): 4982‒4994‍.
[36]
姚檀栋, 邬光剑, 徐柏青, 等‍. “亚洲水塔”变化与影响 [J]‍. 中国科学院院刊, 2019, 34(11): 1203‒1209‍.
Yao T D, Wu G J, Xu B Q, et al‍. Asian water tower change and its impacts [J]‍. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1203‒1209‍.
基金
国家重点研发计划项目(2022YFC3202301); 中国工程院咨询项目“健康水平衡构建与国土高质量保护利用战略(一期)”(2022-PP-04); “长江大保护与深水航道效益发挥对策研究”(JS2022XZ06); “新形势下长江流域发展与安全战略研究”(2023-HYZD-02)
PDF(1156 KB)

Accesses

Citation

Detail

段落导航
相关文章

/