
植被与水平衡要素的时空演变及交互关系
Spatiotemporal Evolution and Interactions of Vegetation and Water Balance Elements
植被覆盖与水平衡要素的演变及交互关系对提升水资源和林草保护的匹配性、促进高质量发展具有重大意义。本文以1982—2019年的归一化植被指数、降水量、实际蒸散发量和产水量为关键指标,以1 km×1 km栅格为基本分析单元,在气候分区、植被分区、三级流域、一级流域等不同分区范围,解析了植被覆盖与水平衡要素的时空演变规律和空间交互关系,识别出“植被增加 ‒ 产水降低”矛盾突出的区域,并揭示了植被 ‒ 产水的空间交互关系的复杂性,在此基础上明晰了“水绿统筹”原则下林草科学保护和恢复面临的主要挑战。研究表明,全国平均降水、实际蒸散发、产水量的多年平均值整体变化不显著,但在气候分区、植被分区、流域分级分析时显著性凸显;不同气候分区、植被分区和分级流域中“植被增加 ‒ 产水降低”矛盾空间差异显著,如暖温带半湿润地区、暖温带落叶阔叶林区域、温带荒漠区域、温带草原区域等区域,淮河、海河、辽河、黄河流域等一级流域以及35.7%的三级流域矛盾尤为突出。研究发现,“三北”防护林工程、退耕还林还草工程的主要实施区域(如西北诸河、黄河流域等)和识别出的“植被增加 ‒ 产水降低”矛盾突出区域具有高度重合性,需警惕重大工程实施区的植被生态需水保障风险。研究建议,提升林草保护与恢复决策的科学性,目标分解需考虑天然径流下降风险,加大重大工程生态需水保障,以推动未来林草科学保护和水资源管理。
The interactions between vegetation and water balance elements play a crucial role in enhancing the compatibility of water resources and forest-grassland conservation, thereby promoting high-quality development. This study employs key indicators, including the Normalized Difference Vegetation Index (NDVI), precipitation, actual evapotranspiration, and water yield, spanning the years 1982 to 2019, with a 1 km × 1 km grid as the fundamental analytical unit. It examines the spatiotemporal evolution patterns and interrelationships between vegetation and water balance elements across various spatial scales, such as climatic zones, vegetation zones, tertiary watersheds, and primary watersheds. It identifies regions and watersheds with pronounced conflicts between vegetation increase and water yield reduction, and reveals the spatial interactions between vegetation and water yield. Based on these findings, the study outlines the key challenges and recommendations for scientifically restoring and conserving forests and grasslands under the principle of "coordinated water and vegetation management". While national averages for precipitation, actual evapotranspiration, and water yield exhibit no significant trends, notable spatial patterns emerge at specific scales. Significant conflicts between vegetation increase and water yield reduction are observed in regions such as the warm temperate semi-humid zone, warm temperate deciduous broadleaf forest zone, temperate desert zone, and temperate grassland zone, as well as in major watersheds such as the Huaihe, Haihe, Liaohe, and Yellow Rivers, and in 35.7% of tertiary watersheds. Additionally, the main implementation areas of major ecological projects like the Three-North Shelterbelt Program and the Grain for Green Program (e.g., Northwest Rivers and the Yellow River basin) overlap significantly with the identified conflict-prone areas, raising concerns about the ecological water needs of vegetation in these areas. The study recommends enhancing decision-making scientificity, accounting for natural runoff reduction risks in target setting, and strengthening ecological water supply assurance for major projects, thereby providing valuable insights for the future scientific conservation of forests and grasslands.
水平衡 / 植被覆盖 / 产水量 / 时空演变 / 交互 / 可持续管理
water balance / vegetation / water yield / spatiotemporal evolution / interaction / sustainable management
[1] |
夏军, 谈戈. 全球变化与水文科学新的进展与挑战 [J]. 资源科学, 2002, 24(3): 1‒7.
Xia J, Tan G. Hydrological science towards global change: Progress and challenge [J]. Resources Science, 2002, 24(3): 1‒7.
|
[2] |
Yang L, Zhao G J, Tian P, et al. Runoff changes in the major river basins of China and their responses to potential driving forces [J]. Journal of Hydrology, 2022, 607: 127536.
|
[3] |
Chen C, Park T, Wang X H, et al. China and India lead in greening of the world through land-use management [J]. Nature Sustainability, 2019, 2: 122‒129.
|
[4] |
Xi Y, Peng S S, Liu G, et al. Trade-off between tree planting and wetland conservation in China [J]. Nature Communications, 2022, 13(1): 1967.
|
[5] |
胡庆芳, 陈秀敏, 高娟, 等. 水平衡与国土空间协调发展战略研究 [J]. 中国工程科学, 2022, 24(5): 63‒74.
Hu Q F, Chen X M, Gao J, et al. Coordinated development between water balance and territory space [J]. Strategic Study of CAE, 2022, 24(5): 63‒74.
|
[6] |
Zhang M F, Liu N, Harper R, et al. A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime [J]. Journal of Hydrology, 2017, 546: 44‒59.
|
[7] |
Zhang P P, Cai Y P, He Y H, et al. Changes of vegetational cover and the induced impacts on hydrological processes under climate change for a high-diversity watershed of South China [J]. Journal of Environmental Management, 2022, 322: 115963.
|
[8] |
Xu Z P, Man X L, Duan L L, et al. Assessing the relative contribution of increased forest cover to decreasing river runoff in two boreal forested watersheds of Northeastern China [J]. Ecohydrology & Hydrobiology, 2022, 22(1): 113‒125.
|
[9] |
彭守璋. 中国1 km分辨率逐月降水量数据集 (1901—2021) [EB/OL]. [2024-06-08]. https://poles.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2/.
Peng S Z. 1 km monthly precipitation dataset for China (1901—2021) [EB/OL]. [2024-06-08]. https://poles.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2/.
|
[10] |
Elnashar A, Wang L J, Wu B F, et al. Synthesis of global actual evapotranspiration from 1982 to 2019 [J]. Earth System Science Data, 2021, 13(2): 447‒480.
|
[11] |
卢诗卉, 赵红莉, 蒋云钟, 等. 基于多源遥感数据和水量平衡原理的灌溉用水量分析 [J]. 水利学报, 2021, 52(9): 1126‒1135.
Lu S H, Zhao H L, Jiang Y Z, et al. Analysis of irrigation water based on multi-source remote sensing data and water balance principle [J]. Journal of Hydraulic Engineering, 2021, 52(9): 1126‒1135.
|
[12] |
孙可可, 许继军, 许斌, 等. 长江源区气温降水变化趋势及其对区域干旱的影响 [J]. 水利水电快报, 2021, 42(9): 15‒20, 25.
Sun K K, Xu J J, Xu B, et al. Variation trend of temperature and precipitation in source region of Yangtze River and its influence on regional drought [J]. Express Water Resources & Hydropower Information, 2021, 42(9): 15‒20, 25.
|
[13] |
徐勇, 郑志威, 郭振东, 等. 2000—2020年长江流域植被NDVI动态变化及影响因素探测 [J]. 环境科学, 2022, 43(7): 3730‒3740.
Xu Y, Zheng Z W, Guo Z D, et al. Dynamic variation in vegetation cover and its influencing factor detection in the Yangtze River Basin from 2000 to 2020 [J]. Environmental Science, 2022, 43(7): 3730‒3740.
|
[14] |
杨洁, 谢保鹏, 张德罡. 基于InVEST模型的黄河流域产水量时空变化及其对降水和土地利用变化的响应 [J]. 应用生态学报, 2020, 31(8): 2731‒2739.
Yang J, Xie B P, Zhang D G. Spatio-temporal variation of water yield and its response to precipitation and land use change in the Yellow River Basin based on InVEST model [J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2731‒2739.
|
[15] |
闫奕飞, 白强, 孙虎, 等. 黄河流域植被变化和产水服务的时空特征分析 [J]. 水土保持学报, 2024, 38(1): 130‒139.
Yan Y F, Bai Q, Sun H, et al. Analysis of spatio-temporal characteristics of vegetation cover and water production services in the Yellow River basin [J]. Journal of Soil and Water Conservation, 2024, 38(1): 130‒139.
|
[16] |
杨强, 王婷婷, 陈昊, 等. 基于MODIS EVI数据的锡林郭勒盟植被覆盖度变化特征 [J]. 农业工程学报, 2015, 31(22): 191‒198.
Yang Q, Wang T T, Chen H, et al. Characteristics of vegetation cover change in Xilin Gol League based on MODIS EVI data [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 191‒198.
|
[17] |
陈发虎, 汪亚峰, 甄晓林, 等. 全球变化下的青藏高原环境影响及应对策略研究 [J]. 中国藏学, 2021 (4): 21‒28.
Chen F H, Wang Y F, Zhen X L, et al. Research on the environment impact of the Qinghai‒Tibet Plateau under global change and the countermeasures [J]. China Tibetology, 2021 (4): 21‒28.
|
[18] |
周国逸, 夏军, 周平, 等. 不恰当的植被恢复导致水资源减少 [J]. 中国科学: 地球科学, 2021, 51(2): 175‒182.
Zhou G Y, Xia J, Zhou P, et al, et al. Not vegetation itself but mis-revegetation reduces water resources [J]. Scientia Sinica (Terrae), 2021, 51(2): 175‒182.
|
[19] |
周立华, 刘洋. 中国生态建设回顾与展望 [J]. 生态学报, 2021, 41(8): 3306‒3314.
Zhou L H, Liu Y. Review and prospect of ecological construction in China [J]. Acta Ecologica Sinica, 2021, 41(8): 3306‒3314.
|
[20] |
罗贤, 何大明, 季漩, 等. 近50年怒江流域中上游枯季径流变化及其对气候变化的响应 [J]. 地理科学, 2016, 36(1): 107‒113.
Luo X, He D M, Ji X, et al. Low flow variations in the middle and upper Nujiang River Basin and possible responds to climate change in recent 50 years [J]. Scientia Geographica Sinica, 2016, 36(1): 107‒113.
|
/
〈 |
|
〉 |