
西南地区农业水资源利用及雨水资源高效调控技术路径研究
鲍玉海, 贺秀斌, 尹飞虎, 伍巧, 龚道枝, 崔宁博
中国工程科学 ›› 2024, Vol. 26 ›› Issue (6) : 169-180.
西南地区农业水资源利用及雨水资源高效调控技术路径研究
Current Situation of Agricultural Water Resource Utilization and Technology Path for the Efficient Regulation Rainwater Resources in Southwestern China
西南地区降水时空分布不均,季节性干旱、工程性缺水与水土流失问题突出,雨水资源高效调控是该区域水土流失治理与农业抗旱防旱的关键举措,对保障国家粮食安全具有重要意义。本文系统梳理了包括云南省、贵州省、四川省、重庆市在内的西南地区水资源特征及农业干旱特点,总结了农业水资源开发利用的现状及存在问题,阐述了西南地区雨水资源高效调控的基本特征、具体技术路径及主要措施。研究发现,西南地区水资源丰富但时空分布不均,农业供水保证率亟待提高,自然水系、人工水网与坡面雨水资源集蓄利用工程的互联互通和协同互济能力不够,水资源时空调配能力弱。研究建议,加强大中型水库和“五小水利”工程建设、研发分区分类的地表径流调控技术体系、推进生态清洁小流域建设、推广农田高效节水灌溉技术体系、强化雨水资源集蓄利用模型开发、完善“建管运”长效机制、强化农村小型水利工程建设科技支撑,为缓解西南地区农业干旱、增加农业水资源供给、优化水资源调配和粮食生产提供技术支撑。
Southwestern China is prone to drought hazards due to rainfall patterns shift, leading to water scarcity for engineering purposes, crop devastation, and ecosystem destruction. The effective management of rainwater resources is crucial for addressing these issues and mitigate agricultural effects induced by drought, which is vital for ensuring national food security. This study reviews the water resource characteristics and agricultural drought patterns across Yunnan, Guizhou, Sichuan, and Chongqing in Southwestern China, and examines the fundamental characteristics, specific technical approaches, and primary measures of an efficient rainwater regulation and control system in this region. Results of the study indicates that the spatiotemporal distribution of water resources is uneven in Southwestern China and the reliability of agricultural water supply urgently needs further improvement. This is due to a lack of integration among natural water systems, artificial water networks, and rainwater harvesting projects on slopes, which hinders the efficient allocation of water resources across different periods and regions. To address these challenges, it is recommended to (1) enhance the construction of large and medium-sized reservoirs and implement "five types of small water conservancy" projects, (2) develop surface runoff control technologies for different regions and environments, (3) promote ecological and clean small-watersheds management, (4) expand the adoption of water-saving irrigation technologies in agriculture, (5) establish models for utilizing rainwater resources, (6) improve sustainable mechanisms for infrastructure construction, management, and operation, and (7) provide technological support for small water conservancy projects in rural areas. These efforts will provide critical technical support to alleviate agricultural drought impacts, increase agricultural water supply, optimize water distribution, and maintain food security in Southwestern China.
雨水资源 / 集雨利用 / 季节性干旱 / 旱地 / 西南地区
rainwater resources / rainwater collection and utilization / seasonal drought / dryland / Southwestern China
[1] |
Romanello M, McGushin A, Di Napoli C, et al. The 2021 report of the Lancet Countdown on health and climate change: Code red for a healthy future [J]. Lancet, 2021, 398(10311): 1619‒1662.
|
[2] |
熊少堂, 赵铜铁钢, 郭成超, 等. 我国各大流域复合高温干旱事件变化趋势与归因分析 [J]. 中国科学: 地球科学, 2024, 54(1): 83‒96.
Xiong S T, Zhao T T G, Guo C C, et al. Evaluation and attribution of trends in compound dry-hot events for major river basins in China [J]. Scientia Sinica (Terrae), 2024, 54(1): 83‒96.
|
[3] |
Wang S P, Zhang Q, Liu Y Z, et al. Effects of global warming on drought onset in China [J]. Journal of Hydrology, 2024, 632: 130964.
|
[4] |
徐群, 赵亮. 近136年(1885—2020年)长江中下游伏旱期划分及其演变分析 [J]. 大气科学, 2024, 48(3): 1072‒1094.
Xu Q, Zhao L. The division and evolution for hot-dry periods in the middle and lower reaches of the Yangtze River in the past 136 years (1885—2020) [J]. Chinese Journal of Atmospheric Sciences, 2024, 48(3): 1072‒1094.
|
[5] |
United Nations Convention to Combat Desertification. Global drought snapshot 2023: The need for proactive action [R]. Bonn: United Nations Convention to Combat Desertification, 2023.
|
[6] |
Yuan X, Wang Y M, Ji P, et al. A global transition to flash droughts under climate change [J]. Science, 2023, 380(6641): 187‒191.
|
[7] |
Intergovernmental Panel on Climate Change. Climate change 2022—Impacts, adaptation and vulnerability [M]. Cambridge: Cambridge University Press, 2023.
|
[8] |
Shu Z K, Jin J L, Zhang J Y, et al. 1.5 ℃ and 2.0 ℃ of global warming intensifies the hydrological extremes in China [J]. Journal of Hydrology, 2024, 635: 131229.
|
[9] |
陈有华, 曾梦晴, 陈彬. 气候变化对粮食生产韧性的影响——基于作物多样化的调节效应研究 [J]. 生态学, 2024, 44(16): 6937‒6951.
Chen Y H, Zeng M Q, Chen B. Impact of climate change on the resilience of food production: Research of the moderating effect based on crop diversification [J]. Acta Ecological Sinica, 2024, 44(16): 6937‒6951.
|
[10] |
王恒, 王博. 农田水利高质量发展: 关键问题与对策建议 [J]. 西北农林科技大学学报(社会科学版), 2022, 22(4): 35‒43.
Wang H, Wang B. High quality development of field irrigation: Key issues and countermeasures [J]. Journal of Northwest A&F University (Social Science Edition), 2022, 22(4): 35‒43.
|
[11] |
Yao J P, Wang G Q, Jiang X M, et al. Exploring the spatiotemporal variations in regional rainwater harvesting potential resilience and actual available rainwater using a proposed method framework [J]. Science of the Total Environment, 2023, 858: 160005.
|
[12] |
dos Santos S M, de Farias M M. Potential for rainwater harvesting in a dry climate: Assessments in a semiarid region in Northeast Brazil [J]. Journal of Cleaner Production, 2017, 164: 1007‒1015.
|
[13] |
Foster T, Rand E C, Kotra K K, et al. Contending with water shortages in the Pacific: Performance of private rainwater tanks versus communal rainwater tanks in rural Vanuatu [J]. Water Resources Research, 2021, 57(11): e2021WR030350.
|
[14] |
高学睿, 闫程晟, 王玉宝, 等. 黄土高原典型区雨水资源化潜力模拟与评价 [J]. 农业机械学报, 2020, 51(1): 275‒283.
Gao X R, Yan C S, Wang Y B, et al. Simulation and evaluation of rainwater harvesting potential in typical areas of Loess Plateau [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 275‒283.
|
[15] |
倪深海, 吕娟, 刘静楠, 等. 变化环境下我国干旱灾害演变趋势分析 [J]. 中国防汛抗旱, 2022, 32(10): 1‒7.
Ni S H, Lyu J, Liu J N, et al. Analysis on the evolution trend of drought disaster in China under changing environment [J]. China Flood & Drought Management, 2022, 32(10): 1‒7.
|
[16] |
谢清霞, 谷晓平, 万雪丽, 等. 西南地区干旱的变化特征及其与大气环流的关系 [J]. 干旱区地理, 2020, 43(1): 79‒86.
Xie Q X, Gu X P, Wan X L, et al. Characteristics of drought variation and its relationship with general circulation of Southwest China [J]. Arid Land Geography, 2020, 43(1): 79‒86.
|
[17] |
王林, 陈文, 黄刚, 等. 中国西南超级干旱的变化特征和多尺度异常叠加效应分析 [J]. 中国科学: 地球科学, 2024, 54(7): 2114‒2132.
Wang L, Chen W, Haung G, et al. Characteristics of super drought in Southwest China and the associated compounding effect of multiscalar anomalies [J]. Scientia Sinica (Terrae), 2024, 54(7): 2114‒2132.
|
[18] |
赵东升, 张家诚, 邓思琪, 等. 1960—2018年中国西南地区旱涝急转的时空变化特征 [J]. 地理科学, 2021, 41(12): 2222‒2231.
Zhao D S, Zhang J C, Deng S Q, et al. Spatio-temporal characteristics of drought-flood abrupt alternation in the Southwest China from 1960 to 2018 [J]. Scientia Geographica Sinica, 2021, 41(12): 2222‒2231.
|
[19] |
韩兰英, 张强, 马鹏里, 等. 中国西南地区农业干旱灾害风险空间特征 [J]. 中国沙漠, 2015, 35(4): 1015‒1023.
Han L Y, Zhang Q, Ma P L, et al. Spatial characteristics of comprehensive risk of agricultural drought disaster in Southwestern China [J]. Journal of Desert Research, 2015, 35(4): 1015‒1023.
|
[20] |
杨春艳, 严小冬, 夏阳, 等. 近56a西南区域降水分布及持续性干旱的研究 [J]. 中低纬山地气象, 2021, 45(2): 15‒22.
Yang C Y, Yan X D, Xia Y, et al. Study on precipitation distribution and persistent drought in Southwest China in recent 56 years [J]. Mid-low Latitude Mountain Meteorology, 2021, 45(2): 15‒22.
|
[21] |
许继军, 陈桂亚, 杨明智, 等. 长江流域干旱灾害应对的主要难点及其科技需求 [J]. 人民长江, 2023, 54(8): 25‒31.
Xu J J, Chen G Y, Yang M Z, et al. Difficulties and scientific and technological demands of drought disaster mitigation in the Changjiang River Basin [J]. Yangtze River, 2023, 54(8): 25‒31.
|
[22] |
董蓉蓉, 粟晓玲, 屈艳萍, 等. 2022年长江流域不同类型干旱时空响应关系 [J]. 水资源保护, 2024, 40(3): 61‒70.
Dong R R, Su X L, Qu Y P, et al. Spatiotemporal response relationships between different types of droughts in the Yangtze River Basin in 2022 [J]. Water Resources Protection, 2024, 40(3): 61‒70.
|
[23] |
闫彩霞, 曾波, 董元昌, 等. 中国西南地区暴雨时空变化特征分析 [J]. 西南师范大学学报(自然科学版), 2023, 48(8): 71‒82.
Yan C X, Zeng B, Dong Y C, et al. Analysis on spatial-temporal variation characteristics of heavy rain over Western China [J]. Journal of Southwest China Normal University (Natural Science Edition), 2023, 48(8): 71‒82.
|
[24] |
韩兰英, 张强, 姚玉璧, 等. 近60年中国西南地区干旱灾害规律与成因 [J]. 地理学报, 2014, 69(5): 632‒639.
Han L Y, Zhang Q, Yao Y B, et al. Characteristics and origins of drought disasters in Southwest China in nearly 60 years [J]. Acta Geographica Sinica, 2014, 69(5): 632‒639.
|
[25] |
陈子凡, 王磊, 李谢辉, 等. 西南地区极端降水时空变化特征及其与强ENSO事件的关系 [J]. 高原气象, 2022, 41(3): 604‒616.
Chen Z F, Wang L, Li X H, et al. Spatiotemporal change characteristics of extreme precipitation in Southwestern China and its relationship with intense ENSO events [J]. Plateau Meteorology, 2022, 41(3): 604‒616.
|
[26] |
林文青, 陈活泼, 徐慧文, 等. 西南地区未来极端降水增加将导致其人口暴露风险加剧 [J]. 大气科学学报, 2023, 46(4): 499‒516.
Lin W Q, Chen H P, Xu H W, et al. Significant increase of precipitation extremes will enlarge its population exposure over Southwest China in the future [J]. Transactions of Atmospheric Sciences, 2023, 46(4): 499‒516.
|
[27] |
水利部长江水利委员会.长江流域及西南诸河水资源公报(2023) [M]. 武汉: 长江出版社, 2024.
Changjiang Water Resources Commission of the Ministry of Water Resources. Changjiang & Southwest rivers resources bulletin 2023 [M]. Wuhan: Changjiang Press, 2024.
|
[28] |
中华人民共和国水利部.中国水资源公报(2023) [M]. 北京: 中国水利水电出版社, 2024.
Ministry of Water Resources of the People's Republic of China. China resources bulletin (2023) [M]. Beijing: China Water & Power Press, 2024.
|
[29] |
贾艳青, 张勃, 马彬, 等. 1960—2015年中国西南地区持续性干旱事件时空演变特征 [J]. 干旱区资源与环境, 2018, 32(5): 171‒176.
Jia Y Q, Zhang B, Ma B, et al. Spatio-temporal evolution characteristics of persistent drought in Southwest China in 1960—2015 [J]. Journal of Arid Land Resources and Environment, 2018, 32(5): 171‒176.
|
[30] |
侯艳, 崔宁博, 郭立, 等. 西南季节性干旱区夏玉米水氮耦合效应与水氮生产函数研究 [J]. 灌溉排水学报, 2024, 43(4): 34‒40.
Hou Y, Cui N B, Guo L, et al. The effect of water-nitrogen coupling on growth of summer maize in seasonally arid areas and water-nitrogen production function in Southwestern China [J]. Journal of Irrigation and Drainage, 2024, 43(4): 34‒40.
|
[31] |
刘南江, 冯爱青, 张鹏, 等. 2023年西南地区冬春连旱时空特征及防范应对建议 [J]. 中国防汛抗旱, 2023, 33(7): 16‒20.
Liu N J, Feng A Q, Zhang P, et al. Spatial-temporal patterns of the winter 2022-spring 2023 drought in Southwest China and recommendations for drought disaster risk reduction [J]. China Flood & Drought Management, 2023, 33(7): 16‒20.
|
[32] |
赵兰兰, 闻童, 赵兵, 等. 西南地区近50年干旱趋势及特征分析 [J]. 水文, 2021, 41(6): 59, 91‒95.
Zhao L L, Wen T, Zhao B, et al. Drought tendency and characteristic analysis in Southwest China during recent 50 years [J]. Journal of China Hydrology, 2021, 41(6): 59, 91‒95.
|
[33] |
中华人民共和国水利部. 中国水利统计年鉴(1984—2022) [M]. 北京: 中国水利水电出版社, 1984—2022.
Ministry of Water Resources of the People's Republic of China. China resources bulletin (1984—2022) [M]. Beijing: China Water & Power Press, 1984—2022.
|
[34] |
中国气象局. 中国气象灾害年鉴(2008—2019) [M]. 北京: 气象出版社, 2009—2020.
China Meteorological Administration. Yearbook of meteorological disasters in China (2008—2019) [M]. Beijing: China Meteorological Press, 2009—2020.
|
[35] |
王建华, 何国华, 何凡, 等. 中国水土资源开发利用特征及匹配性分析 [J]. 南水北调与水利科技, 2019, 17(4): 1‒8.
Wang J H, He G H, He F, et al. Utilization and matching patterns of water and land resources in China [J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(4): 1‒8.
|
[36] |
权燕, 白绍斌. 基于打造"天府粮仓"视角的四川水资源保障对策思考 [J]. 中国水利, 2023 (9): 10‒12.
Quan Y, Bai S B. Measure thinking for safeguarding water resources from the perspective of building a "grain warehouse" in Sichuan [J]. China Water Resources, 2023 (9): 10‒12.
|
[37] |
姜大川, 赵钟楠, 何奇峰, 等. 关于推进成渝地区水网建设的若干思考 [J]. 中国水利, 2023 (9): 4‒6.
Jiang D C, Zhao Z N, He Q F, et al. Thoughts of promoting the construction of the water network in Chengdu‒Chongqing region [J]. China Water Resources, 2023 (9): 4‒6.
|
[38] |
袁伟, 王树鹏. 云南加快水利建设助力农业发展的现状与对策 [J]. 中国水利, 2023 (5): 46‒50.
Yuan W, Wang S P. Current situation and measures of accelerating water project construction to support agricultural development in Yunnan [J]. China Water Resources, 2023 (5): 46‒50.
|
[39] |
夏军, 陈进, 佘敦先, 等. 变化环境下中国现代水网建设的机遇与挑战 [J]. 地理学报, 2023, 78(7): 1608‒1617.
Xia J, Chen J, She D X, et al. Opportunities and challenges of national water network construction under changing environment [J]. Acta Geographica Sinica, 2023, 78(7): 1608‒1617.
|
[40] |
四川省水利厅. 四川省现代水网建设规划 [EB/OL]. (2023-08-28)[2024-06-20]. https://slt.sc.gov.cn/scsslt/c109024/2023/8/28/9970b9e8b67f453986fc1741a2b27919.shtml.
Sichuan Provincial Water Resources Department. Construction planning of Sichuan provincial water network [EB/OL]. (2023-08-28)[2024-06-20]. https://slt.sc.gov.cn/scsslt/c109024/2023/8/28/9970b9e8b67f453986fc1741a2b27919.shtml.
|
[41] |
余海龙, 黄菊莹, 肖国举. 黄土高原半干旱区雨水资源化研究综述 [J]. 人民黄河, 2010, 32(1): 46‒47, 49.
Yu H L, Huang J Y, Xiao G J. Summary of study on rain water resources of semi-arid region in the Loess Plateau [J]. Yellow River, 2010, 32(1): 46‒47, 49.
|
[42] |
唐小娟. 关于中国雨水集蓄利用发展前景的几点思考 [J]. 中国农村水利水电, 2009 (8): 52‒54.
Tang X J. Reflections on China's development prospects of rainwater harvesting and utilization [J]. China Rural Water and Hydropower, 2009 (8): 52‒54.
|
[43] |
张平仓, 程冬兵. 南方坡耕地水土流失过程与调控研究 [J]. 长江科学院院报, 2017, 34(3): 35‒39, 49.
Zhang P C, Cheng D B. Process and regulation of soil and water loss of slope farmland in South China [J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(3): 35‒39, 49.
|
[44] |
鲍玉海, 丛佩娟, 冯伟, 等. 西南紫色土区水土流失综合治理技术体系 [J]. 水土保持通报, 2018, 38(3): 143‒150.
Bao Y H, Cong P J, Feng W, et al. Comprehensive management system of soil and water loss in purple soil area of Southwestern China [J]. Bulletin of Soil and Water Conservation, 2018, 38(3): 143‒150.
|
[45] |
郭廷辅, 段巧甫. 径流调控理论是水土保持的精髓——四论水土保持的特殊性 [J]. 中国水土保持, 2001 (11): 1‒5.
Guo T F, Duan Q F. The theory of runoff regulation and control is the quintessence of soil and water conservation: The fourth discussion on the unique characteristics of soil and water conservation [J]. Soil and Water Conservation in China, 2001 (11): 1‒5.
|
[46] |
张平仓, 程冬兵. 长江流域水土流失治理方略探讨 [J]. 人民长江, 2020, 51(1): 120‒123.
Zhang P C, Cheng D B. Discussion on general plan of soil and water conservation for Yangtze River Basin [J]. Yangtze River, 2020, 51(1): 120‒123.
|
[47] |
李凯, 王根绪, 孙向阳, 等. 西南地区森林生态系统水源涵养评价 [J]. 地理科学, 2023, 43(12): 2217‒2227.
Li K, Wang G X, Sun X Y, et al. Evaluation of water conservation function of forest ecosystem in Southwest China [J]. Scientia Geographica Sinica, 2023, 43(12): 2217‒2227.
|
[48] |
四川省林业厅. 林业在四川抗旱减灾中的作用 [J]. 中国林业, 2007 (4): 24‒25.
Forestry Department of Sichuan Province. The role of forestry in drought resistance and disaster reduction in Sichuan [J]. Forestry of China, 2007 (4): 24‒25.
|
[49] |
黄麟, 祝萍, 曹巍. 中国退耕还林还草对生态系统服务权衡与协同的影响 [J]. 生态学报, 2021, 41(3): 1178‒1188.
Huang L, Zhu P, Cao W. The impacts of the Grain for green project on the trade-off and synergy relationships among multiple ecosystem services in China [J]. Acta Ecologica Sinica, 2021, 41(3): 1178‒1188.
|
[50] |
文亦芾, 毕玉芬, 董亚芳. 金沙江流域退耕还草地水土保持效益分析研究 [J]. 土壤, 2006, 38(4): 489‒493.
Wen Y F, Bi Y F, Dong Y F. Benefit of forage on water and soil conservation in Jinsha valley [J]. Soils, 2006, 38(4): 489‒493.
|
[51] |
Meerkerk A L, van Wesemael B, Bellin N. Application of connectivity theory to model the impact of terrace failure on runoff in semi-arid catchments [J]. Hydrological Processes, 2009, 23(19): 2792‒2803.
|
[52] |
Hammad A A, Haugen L E, Børresen T. Effects of stonewalled terracing techniques on soil-water conservation and wheat production under Mediterranean conditions [J]. Environmental Management, 2004, 34(5): 701‒710.
|
[53] |
蒋仲龙, 叶柳欣, 刘军, 等. 封育年限对毛竹林凋落物和土壤持水效能的影响 [J]. 浙江农林大学学报, 2020, 37(5): 860‒866.
Jiang Z L, Ye L X, Liu J, et al. Effects of enclosure duration on litter and soil water holding capacity of Phyllostachys edulis forest [J]. Journal of Zhejiang A & F University, 2020, 37(5): 860‒866.
|
[54] |
李红琴, 乔小龙, 张镱锂, 等. 封育对黄河源头玛多高寒草原水源涵养的影响 [J]. 水土保持学报, 2015, 29(1): 195‒200.
Li H Q, Qiao X L, Zhang Y L, et al. Effects of fencing on the soil water conversation in Maduo alpine grassland-source of Yellow River [J]. Journal of Soil and Water Conservation, 2015, 29(1): 195‒200.
|
[55] |
马建涛, 柴守玺, 程宏波, 等. 农田秸秆覆盖技术及其应用研究进展 [J]. 生态学杂志, 2022, 41(3): 597‒602.
Ma J T, Chai S X, Cheng H B, et al. Research progress of straw mulching technology and its application in farmland [J]. Chinese Journal of Ecology, 2022, 41(3): 597‒602.
|
[56] |
杨庆楠, 高士军, 张何普, 等. 秸秆覆盖对土壤水热状况的影响 [J]. 中国农学通报, 2024, 40(8): 80‒85.
Yang Q N, Gao S J, Zhang H P, et al. Effects of straw mulching on the soil moisture and temperature [J]. Chinese Agricultural Science Bulletin, 2024, 40(8): 80‒85.
|
[57] |
张志彬. 绿肥覆盖下紫色土坡地柑橘园水土保持及有机碳流失特征研究 [D]. 重庆: 西南大学(硕士学位论文), 2023.
Zhang Z B. Study on characteristics of soil and water conservation and organic carbon loss in citrus orchards on sloping land with purple soil covered with green manure [D]. Chongqing: Southwest University (Master's thesis), 2023.
|
[58] |
胡廷飞, 王辉, 胡传旺, 等. 砾石覆盖厚度对斥水土壤入渗特性的影响及模型优选 [J]. 水土保持学报, 2019, 33(2): 17‒22, 29.
Hu T F, Wang H, Hu C W, et al. Effect of thickness of gravel cover on infiltration characteristics of water repellent soils and its model optimization [J]. Journal of Soil and Water Conservation, 2019, 33(2): 17‒22, 29.
|
[59] |
李王成, 马东祥, 贾振江, 等. 砾石覆盖下的农田土壤环境效应: 研究进展与展望 [J]. 江西农业大学学报, 2024, 46(2): 278‒288.
Li W C, Ma D X, Jia Z J, et al. Soil environmental effects of gravel-sand mulched field: Research grogress and prospects [J]. Acta Agriculturae Universitatis Jiangxiensis, 2024, 46(2): 278‒288.
|
[60] |
王永武, 朱青, 赖晓明, 等. 土壤水文过程对土壤砾石的响应——全球Meta分析 [J]. 中国科学: 地球科学, 2023, 53(9): 2094‒2109.
Wang Y W, Zhu Q, Lai X M, et al. Response of soil hydrological processes to soil rock fragments: A global Meta-analysis [J]. Scientia Sinica (Terrae), 2023, 53(9): 2094‒2109.
|
[61] |
夏自强, 蒋洪庚, 李琼芳, 等. 地膜覆盖对土壤温度、水分的影响及节水效益 [J]. 河海大学学报, 1997, 25(2): 39‒45.
Xia Z Q, Jiang H G, Li Q F, et al. Effect of mulch on soil temperature and moisture and analysis of water saving benefit [J]. Journal of Hohai University, 1997, 25(2): 39‒45.
|
[62] |
蒋文君, 康银红, 陈瑶, 等. 不同覆盖方式对土壤水热分布的影响 [J]. 土壤通报, 2022, 53(1): 74‒80.
Jiang W J, Kang Y H, Chen Y, et al. The influence of different mulching methods on the distribution of soil water and heat [J]. Chinese Journal of Soil Science, 2022, 53(1): 74‒80.
|
[63] |
孟源, 胡兵辉. 元谋干热河谷旱地玉米 ‒ 小麦不同覆盖保水栽培措施的水分效应 [J]. 安徽农业大学学报, 2016, 43(4): 598‒603.
Meng Y, Hu B H. Effects of different covering measures on soil moisture for corn‒wheat cultivation in dry-hot valley of Yuanmou [J]. Journal of Anhui Agricultural University, 2016, 43(4): 598‒603.
|
[64] |
黄欢, 何丙辉, 鲍玉海, 等. 不同截排水布置方式下坡耕地坡面产流产沙的模拟研究 [J]. 灌溉排水学报, 2016, 35(10): 97‒102.
Huang H, He B H, Bao Y H, et al. Effects of different surface water drainage patterns on the characteristics of runoff and sediment under simulated rainfall condition [J]. Journal of Irrigation and Drainage, 2016, 35(10): 97‒102.
|
[65] |
张平仓, 丁文峰. 长江中上游坡耕地侵蚀产沙调控理论与实践 [J]. 人民长江, 2018, 49(1): 23‒27.
Zhang P C, Ding W F. Theory and practice of sediment erosion control on slope cropland in upper and middle reaches of Yangtze River [J]. Yangtze River, 2018, 49(1): 23‒27.
|
[66] |
杨荣福. 云南大理州"五小水利"工程建设成效 [J]. 中国防汛抗旱, 2015, 25(3): 95‒96.
Yang R F. Construction effect of five small water conservancy projects in Dali Prefecture, Yunnan Province [J]. China Flood & Drought Management, 2015, 25(3): 95‒96.
|
[67] |
吕晨钟, 涂捷. 农田水利建设对农业水旱灾成灾面积的影响研究——以水库建设为例 [J]. 生态经济(学术版), 2012, 28(2): 251‒253.
Lyu C Z, Tu J. Construction of water conservancy is to study the impact of agricultural flood and drought disaster area: A case study of reservoir construction [J]. Ecological Economy, 2012, 28(2): 251‒253.
|
[68] |
谢永生, 纪学伟. 云南干热河谷灌区"智慧三网"建设与运营研究——以元谋大型灌区丙间片11.4万亩高效节水灌溉项目为例 [J]. 水利发展研究, 2023, 23(7): 58‒62.
Xie Y S, Ji X W. Research on the construction and operation of the "Three Smart Networks" in dry-hot valley irrigation district of Yunnan: A case study on the high-efficiency water-saving irrigation project of 114 000 mu in Bingjian section, Yuanmou large irrigation district [J]. Water Resources Development Research, 2023, 23(7): 58‒62.
|
[69] |
李恩金, 冉冬梅. 会东县太阳能提灌站的发展分析 [J]. 四川农业与农机, 2017 (6): 37, 45.
Li E J, Ran D M. Development analysis of solar energy irrigation station in Huidong County [J]. Sichuan Agriculture and Agricultural Machinery, 2017 (6): 37, 45.
|
[70] |
杨锦越, 赵晓燕, 沈建华, 等. 青贮玉米农艺节水技术的研究进展 [J]. 安徽农业科学, 2022, 50(19): 4‒6, 10.
Yang J Y, Zhao X Y, Shen J H, et al. Research progress on agronomic water-saving technology of silage corn [J]. Journal of Anhui Agricultural Sciences, 2022, 50(19): 4‒6, 10.
|
[71] |
高传昌, 王兴, 汪顺生, 等. 我国农艺节水技术研究进展及发展趋势 [J]. 南水北调与水利科技, 2013, 11(1): 146‒150.
Gao C C, Wang X, Wang S S, et al. Research progress and development trend of agronomic water-saving technology [J]. South-to-North Water Transfers and Water Science & Technology, 2013, 11(1): 146‒150.
|
[72] |
张杰豪, 梁心蓝, 黄洪粮, 等. 不同耕作措施对花生结荚期产流产沙过程的影响 [J]. 水土保持学报, 2021, 35(1): 71‒78.
Zhang J H, Liang X L, Huang H L, et al. Effects of different tillage practices on the yield of runoff and sediment in peanut podding stage [J]. Journal of Soil and Water Conservation, 2021, 35(1): 71‒78.
|
/
〈 |
|
〉 |